
</,c - lind U2_ 9

CS D L-T- 1180

LUNAR GRAVITATIONAL FIELD ESTIMATION
AND THE EFFECTS OF MISMODELING

UPON LUNAR SATELLITE ORBIT PREDICTION

by

John H. Davis

June 1993

Master of Science Thesis

Massachusetts Institute of Technology

('IASA-CFt-l_t!249) LU_IAR

GPAVIrAT[O_iAL FIELO ESTIMATION AND

TH_ _FF6,CTS OF '_ISMODELING UPON

LUNAR SATELLITE _]P,bIT PREDICTION

M.]. Thesis (,.)raper (Charles

£t-_rk) Lab. ) 165 p

G]/90

N93-ZgO_Z

Unc1_s

0171484

gnAPER[O
The ChadesStark Draper Laboratory,Inc.

555 TechnologySquare, Cambridge, Massachusetts02139-3563



_22



LUNAR GRAVITATIONAL FIELD ESTIMATION

AND THE EFFECTS OF MISMODELING
UPON LUNAR SATELLITE ORBIT PREDICTION

by

JOHN H. DAVIS

S.B., Aeronautics and Astronautics, Massachusetts Institute of Technology
Cambridge, Massachusetts (1987)

Submitted to the Department of Aeronautics and Astronautics
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in AERONAUTICS AND ASTRONAUTICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1993

© John H. Davis, 1993. All Rights Reserved

Signature of Author

Certified by

Department of Aeronautics and Astronautics
7 May 1993

Dr. Michael E. Ash

Principal Member Technical Staff, The Charles Stark Draper Laboratory, Inc.
Thesis Supervisor

Certified by
Professor Richard H. Battin

Department of Aeronautics and Astronautics
Thesis Advisor

Accepted by
Professor Harold Y. Wachman

Chairman, Department Graduate Committee





LUNAR GRAVITATIONAL FIELD ESTIMATION AND THE EFFECTS

OF MISMODELING UPON LUNAR SATELLITE ORBIT PREDICTION

JOHN H. DAVIS

Submitted to the Department of Aeronautics and Astronautics

on May 7, 1993

in partial fulfillment of the requirements for the degree of
Master of Science in Aeronautics and Astronautics

ABSTRACT

Lunar spherical harmonic gravity coefficients are estimated from

simulated observations of a near-circular low altitude polar orbiter disturbed

by lunar mascons. Lunar gravity sensing missions using earth-based near-
side observations with and without satellite-based far-side observations are

simulated and least squares maximum likelihood estimates are developed for

spherical harmonic expansion fit models. Simulations and parameter

estimations are performed by a modified version of the Smithsonian

Astrophysical Observatory's Planetary Ephemeris Program.

Two different lunar spacecraft mission phases are simulated to

evaluate the estimated fit models. Results for predicting state covariances

one orbit ahead are presented along with the state errorsresulting from the

mismodeled gravity field. The position errors from planning a lunar landing

maneuver with a mismodeled gravity field are also presented. These

simulations clearly demonstrate the need to include observations of satellite

motion" over the far side in estimating the lunar gravity field. The

simulations also illustrate that the eighth degree and order expansions used

in the simulated fits were unable to adequately model lunar mascons.
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Chapter One

Introduction and Summary

1.1 Background

On July 20, 1989, the 20 th anniversary of the first Apollo moon landing,

President George Bush challenged the nation to undertake an ambitious

course of human space exploration. After establishing a manned presence in

earth orbit with the Space Station Freedom in the 1990's, the President

proposed that the U.S. return to the moon, and return to stay. From this

lunar basing point, the U.S. could continue human exploration of our solar

system by undertaking a manned mission to Mars.

The establishment of a lunar base will result in significant lunar traffic

to build, supply, and resupply this facility. This increased traffic will require a

lunar navigation system. As the nation prepares its return to the moon, it

will have to decide whether this navigation system should be earth-based,

vehicle-based or lunar-based.

Our initial voyages to the moon primarily depended upon earth-based

navigation systems, although the manned missions had some on-board

capability. An earth-based method could be adopted for future lunar travel,

but NASA's Deep Space Network (DSN) tracking is manpower intensive,

costly, and is not suitable for high traffic rates. Additionally, earth-based

navigation can only track vehicles on the lunar near side. Adopting an earth-

based navigation system would be an impractical stepping stone for human

exploration of Mars and the solar system.

A vehicle-based navigation system could be developed to support

future lunar traffic. Vehicle-based navigation has become practical because of
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advances in inertial navigation equipment and on-board computing

capabilities. Inertial navigation would be limited by our knowledge of the cis-

lunar environment, principally our knowledge of the moon's gravity field.

The limitations of earth-based navigation and the high accuracy

requirements of certain mission phases (principally landing) may require the

development of a lunar-based navigation system. A simple lunar navigation

system similar to the earth's Global Positioning System (GPS) would handle

high traffic rates and would provide accurate lunar far-side navigation. If

high lunar traffic rates are achieved, then a lunar-based system could provide

a higher accuracy system alternative to vehicle-based navigation.

Many low-altitude mission phases will require accurate knowledge of

the moon's gravitational field, especially its far-side characteristics. Spherical

harmonic models are typically used to model the gravitational field near

celestial bodies. Finite expansion spherical harmonic models, however, do

not accurately model the low altitude gravity field of the moon. This is

because the moon's gravitational field contains significant anomalies,

discovered in the late 1960's by scientists at NASA's Jet Propulsion Laboratory

(JPL) [35], making such models inefficient. From earth-based lunar tracking

data, the scientists developed a lunar gravity model. This model was then

compared to topographical images of the moon and revealed mass

concentrations around the ringed maria. These mass concentrations or

"mascons" exhibit very high frequency gravitational behavior and therefore

require a very high number of terms in the spherical harmonic expansion to

model this behavior. Since their discovery, scientists have postulated

different models to account for the lunar mascon phenomenon, since

expanding the spherical harmonic model to high degree and order was

computationally impractical. Chapter Two surveys the spherical harmonic

and several other gravitational field modeling techniques in more detail.

1.2 Motivation

Since the real lunar gravitational field is difficult to accurately model,

this thesis will study the implications of modeling errors. An inaccurate

model of the lunar gravity field will result in the growth of navigation errors.
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Chapter One: Introduction and Summary_

Mismodeled acceleration forces result in both velocity and position errors.

Since gravitational acceleration is a function of position, position errors will

lead to increased acceleration errors, further increasing the velocity and

position errors. This error propagation may or may not be critical depending

upon the magnitude of the errors, the navigation system's ability to measure

them, and the mission phase accuracy requirements.

Specifically, an inaccurate gravity model will significantly affect any

landing maneuvers with strict accuracy requirements. Unmanned cargo

missions to resupply a lunar base will be particularly vulnerable to errors

from a mismodeled gravity field. Since there is no appreciable lunar

atmosphere, gravity forces dominate a vehicle's descent to the moon's

surface. Since the force of gravity is inversely proportional to the square of

distance, navigation errors due to a mismodeled gravity field increase as the

vehicle descends to the surface. Avoiding unacceptable landing errors will

depend upon an accurate determination of the lunar gravity field.

The scientific community is also interested in developing a more

precise model of the lunar gravity field. A better model can improve

knowledge of the moon's composition and internal structure. Models of

different elements, their densities, and their distribution within the moon's

interior could be developed to match the observed gravitational field.

Gravitational models may also help to determine the selenological thermal

and tectonic history. The discovery of lunar mascons has also led to scientific

speculation about how mass concentrations formed in these shallow seas.

The scientific community hopes that a better understanding of the

gravitational field around the ringed maria and other lunar surface features

will help to determine the origin of these features [2, 35].

The purpose of this thesis is to determine the feasibility of using a

spherical harmonic lunar gravitational model, based on observations of a

near-circular polar satellite, to predict low altitude lunar orbits globally.

Rather than attempting to develop a more precise lunar gravitational field

model, this thesis investigates measurement types and satellite orbits that can

be used to develop gravity field models. Each measurement type will have

advantages and disadvantages in terms of cost, schedule, and accuracy. This

thesis investigates each different method's ability to estimate a lunar

21



LUNAR _RAVITATIONAL FIELD ESTIMATION AND SATELLITE ORBIT PREDICTION

gravitational potential model and the model's accuracy in predicting future

lunar orbits. By analyzing the capabilities of different sensing methods, this

investigation will allow NASA to plan unmanned lunar precursor missions

to extract the best lunar gravity field information.

1.3 Initial Lunar Gravitational Sensing Method

Current lunar gravitation field models are based upon earth-based

tracking data from the Lunar Orbiter program of the 1960's (Figure 1.3-1).

These unmanned Apollo precursor missions provided photographic imaging

and gravitational mapping of the moon. Apollo lunar navigation was based

upon Lunar Orbiter's gravity field mapping. In addition to the Lunar Orbiter

missions, tracking data from Apollo missions and some Soviet lunar

missions are included in current gravity field models [3, 12, 19, 33, 41, 47].

Lunar Orbiter gravitational mapping missions utilized Doppler

measurements of radio tracking signals. Lunar Orbiter spacecraft were tracked

by NASA's Deep Space Network (DSN) across the near side of the moon [36].

A DSN tracking station sent a continuous wave S-Band frequency to the

spacecraft. The spacecraft received this Doppler-shifted signal and re-

transmitted it to earth. The tracking station received this signal, Doppler-

shifted once again in frequency. The tracking station used this signal to

calculate the relative velocity between the spacecraft and tracking station. The

relative velocity observed was then combined with position tracking data to

estimate the lunar gravity field using methods similar to those discussed in

Chapter Five.

Earth Moon

Figure 1,3-1: Lunar Orbiter Earth-Moon Geometry

Current lunar gravitation field model accuracy is limited by the

amount of lunar orbital tracking data available. The Lunar Orbiter and

Apollo missions were mostly low inclination missions. Since most missions
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flew about the lunar equator, derived gravity field models emphasize the

effects of anomalies near the equator. Only a fraction of the moon's surface

was covered by these missions [32], and therefore gravity field data is lacking

for lunar polar regions. Additionally, this earth-based gravity mapping

method was limited to observations of near-side lunar spacecraft passes.

Gravitational disturbances on the far side were only determined by their

integrated effects on satellite position and velocity from the end of one near-

side pass to the beginning of the next pass. Thus current lunar gravitational

field models do not provide very meaningful information about the lunar far

side.

1.4 Proposed Lunar Gravitational Sensing Methods

Any future lunar gravitational field sensing system will have to greatly

improve our knowledge of the moon's gravitational field to justify the

mission's cost. To achieve this improvement in accuracy, the system will

have to address the current model's limitations. The motion of an orbiting

body should be sensed without any orbital maneuvering which disturbs the

estimation solution. 1 Thus it is desirable to select orbits which are stable for at

least one lunar orbit to avoid re-boost maneuvering. A high inclination,

preferably polar, lunar orbiter would allow observations of satellite

accelerations over the moon's entire surface as the moon rotates under the

orbital plane. A dual orbiter sensing scheme would be better because it would

allow lunar far-side accelerations to be observed. Better still would be a

sensing scheme observing the motion of several satellites in different

inclinations than those available in Apollo-era lunar missions.

NASA is considering two different sensing schemes. NASA's Jet

Propulsion Laboratory has proposed a dual orbiter scheme which uses radio-

based Doppler observations to sense the moon's gravitational field effects [40].

NASA's Goddard Space Flight Center has proposed a co-orbital scheme which

1 Gravitational accelerations experienced by an orbiter are not measured directly. Methods to
measure the accelerations due to gravity therefore use external observations of a body's motion.
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uses a laser-based system which makes both ranging and Doppler

observations [2].

The dual orbiter sensing scheme uses a low altitude, circular polar

satellite and a high apolune polar elliptical satellite (Figure 1.4-1). The

elliptical satellite orbit is positioned so that apolune initially occurs on the far

side of the moon. This increases the duration of lunar far-side viewing. The

orbit is also skewed such that apolune is outside of the earth occultation zone

which increases the time that the elliptical satellite is within the line of sight

of earth tracking stations. From these orbits the relative velocity between the

two spacecraft can be measured using either the bent pipe or the satellite

bounce methods described below.

Low-Altitude

Spacecraft
Orbit

Elliptical Satellite
Orbit

Two-Way

Earth

Occultation

Zone

Two-Way Coherent Doppler

Figure 1.4-1: Dual Orbiter Sensing Method

The bent pipe method uses a four-way coherent Doppler scheme in

which a high frequency is generated by an atomic clock at a DSN tracking site

and transmitted to the elliptical "viewing" satellite. The "viewing" satellite

uses the Doppler-shifted received signal to generate a lower frequency signal

which it transmits to the circular "gravity sensing" spacecraft. This spacecraft

receives the Doppler-shifted signal and re-transmits it to the "viewing"

satellite. The "viewing" satellite modulates the received Doppler-shifted
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frequency signal from the "sensing" spacecraft onto the frequency signal

received from the tracking station and transmits this signal back to earth. The

signal received by the tracking station is then processed to retrieve both the

relative velocities between the tracking station and "viewing" satellite and

between the "viewing" and "gravity sensing" satellites.

The satellite bounce method uses a two-way coherent Doppler scheme

between the two spacecraft. The circular "gravity sensing" satellite generates a

continuous wave frequency signal for transmission to the elliptical "viewing"

satellite. This satellite shifts the signal's frequency for transmission back to

the first one. The receiving spacecraft extracts the Doppler shift from the

signal, records it and transmits it to earth when in view of an earth tracking

station. Coherent Doppler links between earth tracking stations and either

satellite are used to aid in the estimation of the lunar gravitational field.

Earth-based

Tracking

Satellite-to-SatelliteTracking

Main Co-Orbiting
Satellite Sub-Satellite

Figure 1.4-2: Co-orbital Sensing Method

NASA's Goddard Space Flight Center has proposed a co-orbital scheme

in which a satellite in a circular polar orbit ejects a subsatellite in the same

orbit (Figure 1.4-2). Both spacecraft are affected by lunar gravitational

perturbations, so both are "sensing" vehicles and a laser system measures

their relative motion. The satellite contains the sensing equipment and the

subsatellite is a passive reflector for the satellite's emitted laser beams. The

satellite's laser transmits a light beam toward the subsatellite. This beam

reflects off of the subsatellite back to the satellite. A high accuracy ranging

25



LUNAR GRAVITATIONAL FIELD ESTIMATION AND SATELLITE ORBIT PREDICTION

measurement between the satellite and subsatellite is made by determining

the travel time of a transmitted sub-carrier pulse signal. Lesser accuracy

Doppler relative velocity measurements are made from the frequency

shifting of the transmitted laser signal. Observation data is stored and

transmitted to earth at regular intervals.

1.5 Simulation Tools

The primary tool used to accomplish the goals of this thesis is the

Planetary Ephemeris Program (PEP), a FORTRAN computer program

obtained from the Smithsonian Astrophysical Observatory (SAO) and

executed on Sun workstations at the Charles Stark Draper Laboratory. The

Smithsonian version of PEP has most of the capabilities needed for the

analyses of this thesis. Modifications, coded at Draper Laboratory, have

augmented its capabilities for this thesis research. In addition, auxiliary

software has been developed to analyze lunar orbits, the observation schemes,

navigation uncertainties, and estimated lunar gravitational fields.

Given the description of a body's gravitational field, PEP can

numerically integrate a satellite's motion about that body. For this thesis, PEP

was modified to accommodate a point mass (mascon) gravity model in

addition to the spherical harmonic model. The techniques used in PEP for

numerically integrating the differential equations of motion for a lunar

satellite are described in Chapter Three. This chapter also describes the

methods PEP uses to calculate the partial derivatives of the motion with

respect to orbital initial conditions, gravity harmonic coefficients, and other

parameters. The mascon gravity model modifications coded in PEP are also

covered in Chapter Three.

The Planetary Ephemeris Program (PEP) can also process the

astronomical observations generated by the various lunar gravitational

sensing methods. The many different types of observations that can be

processed in PEP are described in Chapter Four. This chapter also discusses

how PEP generates simulated observations with a truth model (mascon and
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spherical harmonic expansion) and then estimates theoretical values of the

observations for another model (spherical harmonic expansion) to fit those

"truth model" observations. Least squares maximum likelihood estimation

and prediction uncertainty propagation techniques are described in Chapter

Five. For this thesis, noise has not been included in the satellite dynamics.

Kalman filter and system identification techniques may be needed when

processing real observations, because of the noise due to radiation pressure,

gas leakage, and other unmodeled forces. These estimation techniques are

also described in Chapter Five.

1.6 Methodology

The focus of this thesis is the estimation of a lunar gravity field model

based on various measurement types and/or orbital geometries. Each unique

measurement type and orbital geometry combination will be refered to as a

sensing scheme. The standard earth-based orbiter state sensing scheme and

the proposed dual orbiter bent pipe scheme are analyzed in-depth.

Additionally, the co-orbital laser ranging scheme, a non-coplanar bent pipe

scheme, and an earth-based interferometric observation scheme are

investigated to determine whether any of these schemes can reduce the

parameter correlation's observed during gravitational parameter estimation.

Since the true lunar gravitational field is not precisely known, a

"truth" model was developed and used for this investigation, as discussed in

Section 6.4. This "truth" model combines Bills and Ferrari's 16 x 16 lunar

harmonic model [12] up to degree and order five, along with 78 point masses

distributed below the lunar surface to simulate the behavior of mass

concentrations. This truth model was used to simulate observations for the

various sensing schemes.

For each sensing scheme, the coefficients in spherical harmonic fit

models of degree and order 8 and 12 were estimated to optimally represent

the "true" gravity field model by fitting to the "truth" model observations.

Using first guesses for the fit model coefficients and satellite initial osculating

orbital elements, the equations of motion and the equations for the partial

27



LUNAR GRAVITATIONAL FIELD ESTIMATION AND SATELLITE ORBIT PREDICTION

derivatives of the motion with respect to these quantities were numerically

integrated. From these numerical integrations, theoretical values of the

observations were determined. The observation residuals (difference

between the "truth" model observations and fit model's theoretical

observation values) and the observation partial derivatives were computed

and used to obtain parameter adjustments to the first guesses for the fit model

coefficients and satellite initial osculating orbital elements. This process was

then repeated until either the method converged upon a solution or no

solution could be determined. Chapter Six discusses the implementation of

the estimation process for various sensing methods and certain test cases.

The estimated lunar gravitational field models were analyzed to

determine their accuracy relative to the "truth". Navigation errors

propagated in one lunar revolution were used to determine the estimated

gravitational field model's accuracy. Two types of lunar orbits were analyzed:

a 15 ° inclination, 100 km altitude, near-circular orbit and a lunar landing

from a 5 ° inclination, 200 km near-circular parking orbit. These orbits were

propagated using both the "truth" and estimated models. The analysis of the

estimated gravitational field models is discussed in detail in Chapter Seven.

In addition, this chapter discusses the attempts made to break the high

parameter correlations which were discovered during the estimation process.

For the near-circular orbit, the position and velocity errors between the

"truth" and estimated gravity fields were used to quantify the estimated

model's accuracy and thus the sensing method's capability. The gravitational

parameter covariance matrix, determined during the estimation process, was

used with the estimated field's orbit propagation with partial derivatives to

predict position and velocity uncertainties. These predicted uncertainties

were then compared to the true state errors between the two models' orbits.

In real gravity field missions, the true gravity field will not be available for

comparison with the estimate, so it is useful to understand the relation

between these two analyses.

For the lunar landing maneuver, the estimated gravity field model was

used to determine the deorbit burn and the selenographic position for

Powered Descent Initiation (PDI). The spacecraft's circular parking orbit was

numerically integrated until the appropriate time for the deorbit burn. The
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spacecraft's velocity at burn time was then adjusted to simulate the deorbit

maneuver and the spacecraft's elliptical transfer orbit was then integrated.

The spacecraft's position upon reaching the powered descent stage of the

mission was then determined. The "true" PDI point was then compared to

the estimated model target PDI point to determine the model's accuracy for

planning lunar landing maneuvers.

1.7 Summary of Results

The analyses of the 8 x 8 estimated fit models clearly demonstrated that

lunar far-side observations are required in the accurate estimation of the

lunar gravity field. For both the lunar landing maneuver and the satellite

state uncertainty prediction, the observation technique which included lunar

far-side observations in addition to earth-based near-side observations

produced a much more accurate lunar gravity fit model. This estimated

model planned a lunar deorbit maneuver 4.3 times more accurately than the

model based on earth-based observations alone. The earth-based observation

fit model also predicted state uncertainties four times larger than its

counterpart. The earth- and satellite-based fit model produced state errors for

the single orbit that were again roughly a quarter of the earth-based fit

model's errors.

The lunar navigation analyses also demonstrate that the eighth degree

and order spherical harmonic expansion fit models were unable to adequately

model the lunar mascons included in the lunar gravitational "truth" model.

In the best case, the 8 x 8 fit model predicted single orbit ahead uncertainties of

close to three quarters of a kilometer in position and one meter per second in

velocity. The orbit's actual state errors were closer to three kilometers in

position and two and a half meters per second in velocity. Additionally, the

best fit model produced a fifty-six kilometer position error for the lunar

deorbit maneuver. These results are discussed in further detail in Chapter

Eight, which also recommends several subjects related to this thesis which

deserve further study.
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Chapter Two

Gravity Field Models

2.1 LaPlace's Equation and the External Gravitational Field

According to Newton's law of gravitation, two particles attract each

other with a force, acting along the line joining them, which is proportional

to the product of their masses and inversely proportional to the square of the

distance between them [10, p. 95]. From this law, the gravitational force of a

body of mass m2 acting upon a body of mass ml can be mathematically

represented by the formula:

F= Gm'm2,3 (r2-F,) (2.1-1)

/
where G is the universal gravitational constant, and _ and r2 are the position

vectors of bodies one and two respectively.

Unfortunately, this formula is only appropriate if the two bodies are

point masses, or behave as them. Such is the case for spherical bodies if

density is a function of radius from the center only. The point mass model

also provides an accurate representation of the gravitational attraction for

widely separated bodies. In the limit of large distances, gravitational bodies

tend to look like point masses so that mass distribution becomes

unimportant.

For many practical applications, the attracting body cannot be modeled

as a point mass and a different mathematical model must be developed. For

the case in which the attracted body is small compared to the attracting body

and the attracting body is an arbitrary distribution of mass with a finite

PRECE;DiNG PaGE Ei..ANK I',IGT FILMED
31



LUNAR GRAVITATIONAL FIELD ESTIMATION AND SATELLITE ORBIT PREDICTION

dimension, the force on a mass m located at position vector F in Figure 2.1-1

produced by an element of mass dM with position vector /_ is

dP(F) -G mdM (_ - -_)= (2.1-2)

Z

¥
m at (x,y,z)

X

Figure 2.1-1: Distributed Mass acting upon a Point Mass rn

Integration over the entire volume of the distributed body will produce the

gravitational force on the mass m of the attracting body of total mass M. This

force can then be represented by a scalar potential U, such that the

gravitational force on a body located outside of the attracting body may be

obtained as the gradient of the scalar potential, or

P(F) =- m VU(F). (2.1-3)

There is a sign convention discrepancy between some of the references used

and PEP documentation [8]. According to Kaula [24], physicists define the

gradient of the potential field as in Equation (2.1-3), whereas astronomers

define the same gradient with a change in sign. The formulas in this thesis

follow the former convention to agree with PEP documentation and software

coding modifications explained herein.

The scalar gravitational potential U can be written in terms of the rectangular

coordinate system of Figure 2.1-1 and the mass density p as [14]

--cIII[(x_ +(z_
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V2U = -GM

The Laplacian of the scalar potential U in rectangular coordinates is

02U 02 U 02U

V2U = c_x--------_ + -_ + o_z------T- (2.1-5)

Taking the required partial derivatives of the potential U from (2.1-4) yields

- --3
+

(2.1-6)

+(z- ;)a]

+(z-;)]
[(X--_)2 q-(y--,)2 q-(Z--_)2] 5/2

Since the bracketed terms cancel, this reduces to

V2U = 0 (2.1-7)

This relationship is known as Laplace's equation and applies at all points

outside of the distributed attracting mass. Its solutions are called harmonic

functions. Any scalar function, U, which satisfies Laplace's equation and the

far-field boundary condition that the potential approaches 0 as 1/r can be used

to descibe the gravitational field about some distributed mass. If U is defined

with sufficient flexibility, i.e. an infinite number of orthogonal terms with

undefined constant coefficients, then U can be tailored to describe the

gravitational field outside of any arbitrarily distributed mass. The above

method of deriving (2.1.7) is based upon the method used by Kaula [24], Battin

[10], and Comfort [14].

2.2 Spherical Harmonic Expansion for the Gravitational Potential

The most common gravitational potential model is the spherical

harmonic expansion. This expansion can be derived by solving Laplace's

equation in spherical harmonic coordinates. First, the rectangular coordinate

system of Figure 2.1-1 is converted to spherical coordinates through the

transformation below, which is depicted in Figure 2.2-1. If the center of the

distributed mass is selected as the origin of this coordinate system, the

expansion is simplified.
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x = r cos 0 cos ¢ ]

y = rsin 0 cos

z = rsin¢

O<r<oo

O<O<2n: (2.2-1)

/
X

Z

Figure 2.2-1: Spherical Coordinate System

In spherical coordinates, Laplace's equation becomes [24]

Cg(r2C3U) 1 _ / -_-_) 1 c92Ur2V2U = r_r_, -_r +cos$ cos$ + cos2- $ _-_ -0 (2.2-2)

One common method of deriving the solution to U in spherical

coordinates is through the method of separation of variables, maintaining the

boundary condition on r. This method can be found in Kaula [24] or Comfort

[14] and leads to the solution

oo n

U(r, GO) = 2 -1r-_l 2Pnm(Sin_)[Cnm cosmO + SnmsinmO] (2.2-3)
n=0 m=0

where Cnm and Snm are constant coefficients and Pnm are the generalized

Legendre functions of degree n and order m. Equation (2.2-3) is the complete

real solution of Laplace's equation in spherical coordinates. There are other

solutions which are physically inadmissible since they cause the potential to

become infinite at t_ = x/2, 3n/2. These solutions involve the associated

Legendre functions of the second kind. Another method of deriving the

solution to U is to expand the denominator of (2.1-4) in Legendre functions.

This is the procedure carried out by Battin [10] and Croopnick [18].

Equation (2.2-3) is the generalized solution of Laplace's equation and

must be modified for the gravitational case. Laplace's equation holds true

everywhere outside the surface of the gravitational body. The harmonic
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expansion, however, is convergent only from Pl to _ in the radial direction,

where Pl is the body's (lunar) maximum radius, usually the equatorial radius.

Furthermore, Pl can be used to non-dimensionalize the Cnm and Snm

coefficients as shown in Equation (2.2-4). Secondly, U is multiplied by the

gravitational constant and the total mass of the attracting body to satisfy

Equation (2.1-3). The n=0, m=0 term is the point mass approximation for the

attracting body and can be separated from the summation for ease of

computation. The Snm coefficient is meaningless for m=0 because sin(m0) is

always zero. Separating the m=0 terms simplifies the summation. The

Pn0(sinqb) Legendre functions then become the standard Pn(sinqb) Legendre

polynomials. When the m=0 terms are separated, the Cn0 terms are

commonly replaced by Jn terms, where Jn = -Cn0. After the previous

modifications, the spherical harmonic gravitational potential, U, becomes

1-_,J, -- Pn(sinq) +

U(F, G 0)- -GM .:1

r _ _ ,'p ",'_-_.
[,_=l/rJ _= P,,,,,(sin_)[C,,,,,cosmO+S,,,,,sinmO]

(2.2-4)

Additionally, if the attracting body's center of mass is the origin of the

coordinate system, then the first degree terms are identically zero [22],

Jl=0, Cl1=0, $11 =0

and the summation limits can begin with the second degree terms.

(2.2-5)

When dealing with large degree models, it is common to normalize

the Legendre functions, and therefore adjust the tesseral coefficients as well.

The Legendre functions are normalized to satisfy the equation

{fj( -P.m(sinrp)sinmO) =4_r __<_<_ (2.2-6)

This leads to the following relationship between the unnormalized and

normalized Legendre functions and the inverse relationship between the

unnormalized and normalized coefficients:
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P-. = -_+l P. (m=0)

P.., ]2(2n+l)(n-m)! P.m
- +

(m>0)

1

_= ,__n___ j . (m=0)

,.+m,, (m > 0)

(2.2-7)

(2.2-8)

The Planetary Ephemeris Program (PEP) was modified to allow

normalized Legendre functions to be used for higher degree harmonic

models. Normalized coefficients are better conditioned for PEP's floating

point parameter estimation algorithms, especially for higher degree models.

Appendix A discusses the Legendre polynomials, the generalized Legendre

functions and the recursive formulas developed for their implementation.

Although use of the normalized Legendre functions was considered necessary

for this thesis, this scaling was not considered necessary for the Legendre

polynomials. Because of this inconsistency in scaling, the equations coded in

the software use normalized tesseral coefficients and unnormalized zonal

coefficients.

After accounting for the above-mentioned modifications, the spherical

harmonic potential ec uation (2.2-4) becomes

U(r, 0, 0)= -GM ,=2
n

r _(o')"E[e.mcosmO+S, msinmO]P,m(Sin¢ )
,,=2 \ r ) m=l

(2.2-9)

The Planetary Ephemeris Program uses this equation with finite summation

upper limits. The coding in PEP separates the central body term from the

harmonic summations.
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2.2.1 Relation between Spherical Harmonics and Moments of Inertia

The moments of inertia about a solid body are closely related to the

gravitational potential for a distributed mass. An expansion of Equation (2.1-

4) for the gravitational potential contains the terms for the moments of

inertia.

body

body

I_; = fSS(_2 + _/2) dm

body

I _,7 = _SS _rl dm

body

I _; = S_S _ _ dm

body

I_ = S_S 71_ dm

body

(2.2.1-1)

Equations (2.2.1-1) are valid for any arbitrary rectangular coordinate

system (_,rl,_) originating at the body's center of mass. The spherical

harmonic potential function U was developed from the (r,q_,0) coordinate

system of Figure 2.2-1 which corresponds to the (x,y,z) rectangular coordinate

system of Figure 2.1-1. Converting the moments of inertia to this (x,y,z)

system, the second degree coefficients in the gravitational potential function

satisfy the following relations [24, 30, 32, 44].

C2 ° _2(I_x +I_¢) -I=

= p2 M

C21= _ $21 = Iyz

Pt M p2M

I_ - Ixx

C22 = 4p2M

S==I 
2p2M

(2.2.1-2)

Since the lunar moments of inertia can be obtained by observing the

physical librations of the moon, the second degree coefficients can be

determined without sending spacecraft to the moon. If the (x,y,z) axes are

principle axes, the products of inertia will be zero, resulting in

C21 = 0, S21 = 0, S22 = 0 (2.2.1-3)

In the lunar case, the principle axes coincide with the x axis pointing

towards the earth and the z axis pointing along the axis of rotation.

Unfortunately, equations (2.2.1-3) do not hold exactly with the inertial

reference frame used by PEP in this thesis. Since the lunar moments of
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inertia can be experimentally determined from earth, it is possible to

simultaneously process lunar rotation observations with satellite

observations such as those simulated in this theses. In this manner,

equations (2.2.1-3) and the non-zero equations in (2.2.1-2) could be assumed to

hold exactly. Processing lunar laser corner reflector observations [13, 17]

would provide estimates of the second degree coefficients with a very high

degree of confidence and the lunar satellite observations could be

simultaneously processed for estimates of the higher degree coefficients.

2.2.2 Limitations of the Spherical Harmonic Expansion

Although the spherical harmonic expansion is frequently used to

describe the gravitational potential of a distributed mass, it is not an efficient

model for all uses. Since the model is based upon spherical coordinates, it

produces an uneven resolution of coverage from the equator to the poles.

This uneven resolution can lead to modeling inefficiencies.

Figure 2.2.2-1: Zonal, Tesseral, and Sectorial Harmonic Patterns

The spherical harmonic model breaks the sphere up into zonal,

tesseral, and sectorial patches (Figure 2.2.2-1). The patches are separated by

lines where the terms are identically zero. On one side of the line, the term

will be positive and on the other it will be negative. The zonal, Jn, terms, are

independent of longitude, 0, and dissect the globe of interest into n+l bands

along lines of latitude. The tesseral terms, Cnm and Snm, dissect the globe of

interest into patches of both latitude and longitude. A tesseral term will have

n-m+1 sections of latitude and 2m sections along lines of longitude. The

sectorial terms, Cnn and Snn, are independent of latitude, _), and dissect the

globe of interest into slices, like sections of an orange.

38



Chapter Two: Gravity Field Models

Defining a spherical harmonic gravitational model with a specific

resolution at the equator provides an overly fine longitudinal resolution at

the poles. Obviously, finer surface resolutions require higher degree models.

The number of harmonic coefficients, however, grows as the square of the

degree, so increasing the degree of a model is not an insignificant task. A

more efficient model, in terms of coefficients required to define a desired

surface resolution, would use equal size mass density patches over the surface

of the body. Table 2.2.2-1 lists the degree and order of spherical harmonic

models and the number of surface mass density patches required to get

various lunar surface angular resolutions for the gravitational potential. The

table ignores the difficult patch layout problem and resultant inefficiencies, so

that the number of n ° x n ° surface mass density patches is the patch area in

steradians (n2_2/1802) divided into the number of steradians in a sphere (4_).

Table 2.2.2-1: Spherical Harmonic and Surface Mass Density Surface Resolution Comparison

Resolution

Degrees Km

22.5 683

11.25 341

3.297 100

1.648 50

1.000 33

Spherical Harmonics

Traverse Time Degree &
(100 km Alt) Order

442 s 16 x 16

221 s 30 x 30

65 s 109 x 109

32 s 218 x 218

20 s 360 x 360

# of

Coefficients

285

957

12,096

47,957

130,317

Surface Layer

# of Patches

82

326

3,795

15,190

41,253

Table 2.2.2-1 lists the travel time to cross a patch of given size, since this

factor is important in determining the resolution obtainable by observing a

low-altitude orbiter. For estimation purposes, there should be at least two

observations (or measurements) within the time it takes to fly over a given

patch. Therefore, with 60 second Doppler count intervals of a satellite in a 100

km altitude orbit, a spherical harmonic expansion of degree and order 30 is

theoretically possible; more than three observations are obtained per surface

patch. Unfortunately, this rule of thumb does not account for smaller

spherical harmonic patches at the poles or the lack of observations during

lunar occultations.

As the table shows, a surface mass density model provides an economy

in the number of coefficients estimated, and might be a preferred approach for
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modeling or estimating the lunar gravitational field. The simulations of this

thesis, however, were done with the spherical harmonic model since a

surface mass density model has not been validated for PEP. Nonetheless,

some of these other modeling techniques are discussed here for completeness.

2.3 Localized Surface-Layer Gravitational Field Models

Since lunar mascons act as localized gravitational disturbances, their

modeling requires a fine degree of resolution to capture their high frequency

content. A very high degree spherical harmonic model is required to model

this behavior, which requires the estimation of a very large number of

coefficients. As shown in the previous section, a more efficient method of

modeling this behavior may be obtained through models focusing on the

local, rather than global, behavior. In an attempt to recreate their high

harmonic frequency behavior, mascons have been modeled by point masses,

lens shaped mass concentrations, and gravity dipoles. In some instances,

these mascon models have been used to model the entire lunar gravitational

field, and in other cases, they have been combined with low degree spherical

harmonic expansions.

2.3.1 Point Mass Model

The point mass model can be used to represent the behavior of an

individual mascon. The gravitational force due to a point mass, Equation

(2.1-1), results from taking the gradient of the following potential.

-Gm2 (2.3.1-1)

U(_') = I_,-_1

Multiple mascons can be modeled by summing the potential contribution of

each individual point mass. The resulting potential model for n-1 point

masses becomes
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n Gm i

i=2

(2.3.1-2)

Typically, these point masses are distributed about known mascon

locations. To recreate mascon behavior, the location, mass and depth of the

point masses are adjusted to fit observations. Point masses are positioned

below the lunar surface to avoid singular conditions which would result as

the separation distance approaches zero. To globally model the moon's

gravitational field with point masses, the model should constrain the total

mass and center of mass of the system to known values.

2.3.2 Surface Disk Model

Because point mass models did not satisfactorily fit lunar orbit

observations, scientists turned to more sophisticated surface layer

representations. Scientists at the Aerospace Corporation [47] and the Jet

Propulsion Laboratory [4] replaced the point mass model with a surface disk

or lens shaped model. This model is derived from the potential of an

ellipsoid of uniform density which is given by Equation (2.1-4) with the

boundary of the ellipsoid used for the limits of integration. The density

function of (2.1-4) is assumed to be constant and integrates to the mass of the

body. The boundary condition of an ellipsoid is

(2.3.2-1)

where a, b, and c are the dimensions of the ellipsoid along the principal axes

x, y and z. The surface disk or lens model uses the specialized case of an

oblate spheroid. Figure 2.3.2-1 shows a prolate spheroid (a=b<c) and an oblate

spheroid (a=b>c). The gravitational attraction for a point outside an oblate

spheroid of uniform density is [34]

Fx Fy_ 3Gm[ -e _l+k+e 2 ( e )]X - y 2a3e 3 _ i+k +sin -1 _ (2.3.2-2a)
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F z 3Gm ae

z a3e 3 _/c 2 +a2k tan-I / ae 1
(2.3.2-2b)

where e is the spheroid's eccentricity, so that c2=a2(1-e2), and the variable k is a

positive solution to the quadratic equation

a2k 2 +(a2 _(x 2 +y2 +z2l)k_z2=O (2.3.2-3)

z z

Y

x x

Figure 2.3.2-1: Prolate and Oblate Spheroids

As the thickness, c, of the spheroid approaches zero, the gravitational

attraction of the disk is obtained. The resulting forces are then [47]

F_..Kx= Fy

Z

2-'_" l' (l"+'-k)

3Gm F 1 -1 1

(2.3.2-4)

The mass of the disk is m, a is its radius, and the x, y, and z coordinates are as

in Figure 2.3.2-1. In the limit as the disk's radius, a, approaches zero, the disk

shaped model approaches the point mass model.

The Aerospace Corporation scientists used 600 surface disks of 50 km

radii covering the lunar surface to model its gravitational field [47]. At JPL,

they used 117 lens-shaped mass concentrations placed about 50 km below the

lunar surface to model the gravitational field [5]. In the JPL model, the lens-

shaped mass concentrations augmented the moon's central body attraction.

Both models employed positive and negative mass disks in order to recreate
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the observations from lunar satellites. Naturally, negative (repulsive) mass

surface disks are not physically realizable, but they do model situations where

a lunar surface feature is significantly less dense than its surroundings.

Both of these surface disk models provided better correlation to lunar

observations than previous models. Unfortunately, they did not constrain

the lunar center of mass. When the models were converted to spherical

harmonic models, J1, Cll and $11 coefficients were required. Additionally,

both models assumed a priori knowledge of the mass concentration locations

and placed them about the moon's surface (or just below it) on a grid pattern.

If such a priori knowledge were not used, the estimation process would

require five terms to describe each surface disk: radius from the moon's

center, latitude, longitude, strength (mass), and disk radius. A better model

would have allowed the concentration's location to vary and would have

constrained the center of mass. This, however, would have involved too

many variables for the model to converge with the given lunar orbiter data.

2.3.3 Gravity Dipole Model

A gravity dipole model has also been proposed to account for the effect

of anomalous mass concentrations upon low orbiting bodies [18]. A

gravitational dipole consists of a mass +m separated from a fictitious mass -m

by a distance d (Figure 2.3.3-1). In the limit as d approaches zero, m is

assumed to get larger so that the product md remains constant. The strength

of the dipole, D, is the result of the following limit

lim m(_') d =/_(F') (2.3.3-1)
d_0

Gravitational dipoles have never been shown to physically exist, but a

distribution of these dipoles can be useful for modeling the lunar gravity

field.

The gravitational potential due to a gravity dipole may be written as

U(_) = -G_ D(_') coS0ds (2.3.3-2)
_ _,[2

43



LUNAR GRAVITATIONAL FIELD ESTIMATION AND SATELLITE ORBIT PREDICTION

where ds is a patch of the surface and the other elements are pictured in

Figure 2.3.3-1.

TI S

mff ')

}d

'o,

Figure 2.3.3-1: Surface Gravity Dipole

Gravity dipoles can be useful modeling tools because of their unique

properties. The most useful property is that they produce a discontinuity in

the tangential component of the gravitational field when traversing the

dipole layer. The gravitational field normal to the dipole layer, however,

remains continuous as the layer is crossed. This allows gravity dipoles to

model unexplained out of plane accelerations. Using a ring of mass and

gravity dipoles in a continuous line distribution around the lunar equator;

Croopnick [18] successfully modeled actual disturbing accelerations beneath a

low altitude orbiter. The dipoles were oriented normal to the equatorial

plane, so that they were used to account for out-of-plane disturbing

accelerations. The mass ring, meanwhile, accounted for the radial and

tangential (in plane) components of the disturbing accelerations.
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Orbit Propagation

3.1 Numerical Integration Techniques

Two classes of perturbation methods are used in celestial mechanics to

determine precise spacecraft orbits. General perturbations generalize the

expressions for two-body motion to include disturbing effects of other bodies

using infinite trigonometric series expansions and integrate these series term

by term. Special peturbations use numerical methods for deriving the

disturbed orbit by direct integration of the rectangular coordinates or a set of

osculating orbital elements [10].

Orbit propagation in PEP is performed using the numerical methods of

special perturbations. Numerical orbit determination techniques are prefered

because of the ease of implementation and the accuracy of solutions. The

growing capabilities and increasing speeds of modern digital computers have

significantly increased this method's accuracy and utility. Using Cowell's

method, PEP integrates the equations of motion in rectangular coordinates

fixed in inertial space. Section 3.2 discusses the units and coordinate frames

used in this study's analyses. The equations of motion and the equations for

the partial derivatives of motion with respect to gravity harmonic coefficients

and initial osculating orbital elements, as used in PEP, are covered in Sections

3.3 and 3.4.

Two of PEP's numerical integration techniques were used for this

study: the Adams-Moulton and Nordsieck methods. The Adams-Moulton

constant step size integration technique with 11 th differences was used for the

propagation of near-circular lunar orbits [15]. This technique uses predictor-

corrector techniques to accurately extrapolate forward in time a satellite's
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position and velocity. Its integration step size should be smaller then 1/100 th

of the satellite's orbital period to ensure numerical stability. An even smaller

step size must be used to accurately sample higher degree gravitational

harmonics. A very conservative rule of thumb is to use a step size of 1/(100n)

of an orbital period to simulate an n × n degree and order spherical harmonic

model. In PEP the step size is 2 m days, where m is a negative number. A two

hour lunar orbit using an m = -10 step size will have over 170 steps per orbit,

ensuring numerical stability. An m = -14 step size for the same orbit will

have over 1,365 steps per orbit, which should adequately model a 13 x 13

spherical harmonic gravity model.

Elliptical orbits were propagated by the Nordsieck fifth degree variable

step size technique [38]. Since the technique is self starting, it is used to start

the Adams-Moulton method. This technique predicts the orbit ahead using a

fifth degree polynomial whose coefficients are approximations to derivatives

of the function being integrated. The integration output file therefore

contains the satellite position, velocity, acceleration, and jerk [8]. The variable

step size uses a smaller step near periapse, where quantities change more

rapidly. For highly elliptical orbits, this is a more efficient integration

technique, since constant step size methods propagate the entire orbit with

the smallest required step size.

Despite the integration step size used, integration quantities are written

to an output file using a different step size. This output step size is generally

two times the integration step size. For low frequency orbital disturbances,

less frequent output step sizes can be used. A satellite's position and/or

velocity are determined at specific observation times by interpolating from

the satellite's integration output file. Everett eighth difference interpolation

is performed on constant step size integration files. This method fits a ninth

degree polynomial through the ten output times surrounding the

observation time. Hermite interpolation is performed on variable step size

integration files. This method uses a fifth degree polynomial agreeing with

position, velocity, and acceleration at the two output times surrounding the

observation time [8].

46



Chapter Three: Orbit Propagation

3.2 Units and Coordinate Systems

The numerical integration methods of special perturbations require

that units of time and the gravitational constant are precisely defined. The

time unit in PEP is the coordinate time day defined in terms of atomic time in

Appendix B. The distance unit is the Astronomical Unit (AU), defined by

setting the square root of the gravitational constant times the mass of the sun

to the Gaussian value (see Appendix B).

Numerical integration of the satellite equations of motion are

performed in an inertial Cartesian coordinate system. PEP's current inertial

coordinate system is based upon the mean equinox and equator of the earth of

1950.0, or Julian Date 2,433,282.423. This coordinate system uses the earth's

rotation axis at this time as the z axis, with the x axis along the 1950.0 mean

equinox pointing towards the constellation Aries, and the y axis completing a

right-handed coordinate system. The transformations between this

coordinate system and those fixed in the moon and earth are discussed in

Appendix C.

For lunar satellite propagations, the origin of this coordinate system is

placed at the moon's center of mass. The coordinates of perturbing bodies

during an integration are determined from the coordinates of the earth-moon

barycenter relative to the sun, of the moon relative to the earth, and of

planets relative to the sun calculated by interpolation from an n-body file

supplied from the Smithsonian Astrophysical Observatory (SAO). This n-

body file is based upon the SAO's fit to observational data. The moon's

coordinates are based upon formulas from Brown's lunar theory.

To analyze the PEP propagated orbits, auxiliary software was written to

transform the inertial integration Cartesian coordinates into a selenographic

coordinate system. The selenographic coordinate system is also centered at

the lunar center of mass, but its z axis is the lunar rotation axis, the x axis

points toward the earth, and the y axis completes the right hand coordinate

system (see Appendix C.1). One auxiliary software program computes

selenographic orbital elements and satellite ground tracks from an inertial

integration file. Initial conditions for lunar orbits were chosen in the

selenographic coordinate system. The orbital angles (i, f_, to) were then

transformed to the inertial integration coordinate frame in a second auxiliary
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software program using the transpose of the transformation matrix used in

the first program.

For this thesis, inertial Cartesian coordinate frame positions will be

referred to as )_, and in selenographic Cartesian coordinates as U, where the

two are related by the transformation matrix R(t) as follows (Appendix C.1)

_= O= (3.2-1)

[RllR12R1311U=R(t).,X= R2, R22 R23 -'X=//_ "

R31 R32 R33 L/_

(3.2-2)

Additionally, the selenographic Cartesian coordinates are related to the

selenographic spherical coordinates (r,G0) by the relationship

I!]rrcos0cos l=/rs_0_o_/
1_ rstn¢ J

(3.2-3)

so that the inertial coordinate frame can be related to the selenographic

spherical coordinates used in the spherical harmonic expansion by the

relations

r--I_l--(_) _ =1_1 (3.2-4)

cosq = _/1 - sin 2 (3.2-5)

1 _T_

rcos'---'-_ (3.2-6)

These transformations are used in PEP's internal transformation

routines, in the two auxiliary software programs, and in the partial

derivatives of satellite motion equations covered in Section 3.4.
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3.3 Equations of Satellite Motion

Because of the nature of the equations of motion for a satellite, PEP

integrates an augmented state vector,

2;, L× I (3.3-1)

where Xbl is the position of body b (satellite) with respect to body 1 (the moon)

defined by (3.2-1)and Xbl is its time derivative:

=-_
(3.3-2)

For the following equations, )_, )_, and )_* will all be used, although

the reader should realize that "state" refers to the augmented state vector, )C*.

The equations of motion for a lunar satellite relative to the moon may

be written as:

c/2xbl Xbt
-_ --GM, r3--7 + FI t + ¢d + FIe + other forces

(3.3-3)

with the initial condition at t=t0

J_bl = J_blO (3.3-4)

In this thesis, the "other forces" (radiation pressure, gas leaking,

thruster firing) are ignored, but can be included when fitting to real

observations. In Equation (3.3-3), the Ht and He terms are the effects of

gravitational harmonics (zonal and tesseral) for the moon and earth

respectively, and the • term is the point mass perturbing accelerations of

other bodies upon the spacecraft and the subscripts e, s, and p refer to the

earth, sun and planets.

F% ;L]c£=  -'GMiLr b r]
i=e,s,p

(3.3-5)

For the simulations run, the earth and sun perturbing attractions were

included. The effect of all other bodies was considered negligible for these

simulations.
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3.3.1 Effect of Lunar Gravitational Harmonics

The acceleration on a satellite due to the gravitational potential U of

the moon is obtained by taking the gradient of the potential (2.1-3). Since

Equation (3.3-3) already accounts for the central body attraction, the effect of

the remaining harmonics is derived from (2.2-9) without the central body

term. The resulting acceleration is

Nz - . T
_-'_.- nF-- (n + l)Xb/ _, (asm_'_ . ]

_=2I'Z L_'" ----r,-_-- r. rb, [ 3X----_b:J _- [

fill .._ GMI " [Cnm cosm0 4- Snm sinmO] X ] _

Nt n . T -r_, _".nX" [-_, (asm¢_3 -_ (n+l)Xbt] //
7.Z 7.' II"nmrbll _--q-_'--,I-Fnm----I+ 'FI

m[Snm cOSmO-CnmsinmO]Pnmrb1-_b I

(3.3.1-1)

where X is the ratio of pl/rbl, Nz is the degree of zonals used in the spherical

harmonic expansion and Nt is the degree and order of tesseral harmonics in

the expansion. The recursive formulas for Pn, Pn, Pnra, and Pnm in terms of

the argument sin_ which have been coded in PEP are given in Appendix A.

The partial derivatives of the selenographic spherical angles in (3.3.1-1)

are obtained by differentiating Equations (3.2-5) and (3.2-6). This

differentiation results in the following relationships

(asin*)rbI aZ1 = R3 - rbZ ¢)
(3.3.1-2)

/ /T cos,( cos / -sin 0 _, = r co--s_ co---_ a--_bl r_l
- -- cos O (3.3.1-3)

(1 Ta0

cos0 aRbl = /_2 sin0 (acos¢/r -
Xbl Sin 0

rcos# cos_ 3_'b, r2i
(3.3.1-4)
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Equations (3.3.1-3) and (3.3.1-4) can be simplified by multiplying the

first by -sin0, the second by cos0, and then adding the two equations. This

yields the following formula for the partial derivative with respect to 0.

T

_ 1 [/_2 COS 0 -- /_1 sin 0]
rbl COS

(3.3.1-5)

Equation (3.3.1-1) is singular at q_ = +90 ° for PEP's algorithms. This is

generally not a problem since it is highly unlikely that a satellite numerical

integration step would land exactly over a pole. One simulation, however,

used a polar location as an initial condition and PEP was unable to propagate

its orbit. The initial mean anomaly for this orbit was altered by one degree

and the integration proceeded without any further difficulties.

3.3.2 Effect of Other Gravitational Body Harmonics

PEP has the capability to include other (non-central) gravitational body

perturbing effects upon a satellite's motion. This enables PEP to handle

spacecraft fly-by missions. PEP can include the effects of a destination, or

target, body's harmonics upon the motion of a satellite traveling towards one

body but which is within the sphere of influence of another body. Using this

feature, PEP can also include the earth's J2 harmonic upon a lunar orbiting

satellite. Higher order terms can also be included for integration accuracy, but

are rarely required.

The effect of earth perturbations on the motion of a lunar satellite

relative to the moon (He from (3.3-3)) is the difference between the effect of

the earth on the satellite (Hbe) and the effect of the earth on the moon (Hie).

Hbe is given by Equation (3.3.1-1) with a change of subscripts, replacing

subscript 1 with e. The effect of earth harmonics upon the moon is calculated

by replacing the GMt terms in (3.3.1-1) by GMc, (the subscript c refers to the

earth-moon barycenter), the subscript 1 by e, and the subscript b by 1. The He

term in (3.3-3) is then given by

/-te =/-tbe --/_te (3.3.2-1)
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Since low altitude lunar orbits and eccentric orbits with apolune on the

far side of the moon were simulated, no earth perturbing effects were

included. When processing real observations to estimate the lunar

gravitational field, earth's J2 harmonic should be considered since it is three

orders of magnitude larger than the other earth harmonics.

3.3.3 Effect of Mass Concentrations

For this thesis, PEP was modified to include the effects of mascons

upon lunar orbiting satellites. Since these modifications have not been

integrated into the SAO's version of the software, the Draper Laboratory

modified version will be referred to as PEP-D. PEP-D implements mascons by

modeling them as point masses (Section 2.3.1).

Due to mascon model implementation, the equations of motion for a

lunar satellite relative to the moon (3.3-3) become, in PEP-D,

d2Xbl = _GMI(1 " Y_bl
" - v +H +ce+He+g

(3.3.3-1)

with the same initial conditions, (3.3-4). In Equation (3.3.3-1), the K term is

the effect of all of the mascons and a_ is their total mass fraction.

The mass of each mascon and its selenographic position in spherical

coordinates is entered into PEP-D as the program is initialized. The mass or

strength of a mascon is input as a fraction of the total central body mass and

both positive and negative values are allowed. If Nk is the total number of

mascons, the total mass fraction of the mascons is then calculated by

Nk

= _ m i 0 _< v < 1 (3.3.3-2)/9
i

i=1

The original central body term from (3.3-3) is reduced by the factor (1-_)

to conserve mass in the lunar system. This will allow the lunar mascon

model to behave identically to the central force model far from the moon.
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The acceleration on a satellite due to the gravitational potential of Nk

mascons is obtained by taking the gradient of the point mass potential (2.3.1-

2). The resulting acceleration is

Nk

I7, = -GM 1 __, mi_c_bi3

i=1 ?'bi

(3.3.3-3)

From the input spherical mascon selenographic coordinates, PEP-D

determines their inertial Cartesian coordinates )_ii using Equation (3.2-3) and

the inverse of Equation (3.2-2). The coordinates of the lunar satellite relative

to mascon i and their separation are then

Xbi "- Xbl -- Xil (3.3.3-4)

rbi = lXbil (3.3.3-5)

Unfortunately the mascon implementation in PEP-D does not

constrain the lunar center of mass. As mentioned in Section 2.3.2, when

converting a surface layer model with an unconstrained center of mass to a

spherical harmonic expansion, first degree harmonic coefficients J1, Cll, and

$11 need to be determined. Rather than modify PEP-D to estimate first degree

coefficients, this thesis uses mascon models in which the lunar center of mass

is not disturbed. If any mascons are used, PEP-D calculates the central body

center of mass by the formula

Nk

Xc.m. = _.a miXil (3.3.3-6)

i=1

When the somewhat arbitrary mascon "truth" model was created (Section

6.4), this feature was used to determine the placement and mass of

"balancing" mascons to preserve the lunar center of mass.

3.4 Partial Derivatives of the Satellite Motion Differential Equation

The partial derivative of Equation (3.3-3) with respect to a parameter (z

yields the variational equations that are numerically integrated in PEP along

53



LUNAR GRAVITATIONAL FIELD ESTIMATION AND SATELLITE ORBIT PREDICTION

with the equations of motion. The parameter o_ could be one of the orbit's

initial conditions, the harmonic coefficients of the gravitational field, or other

parameters of interest. Taking into account the effects of mascons, the partial

derivative of Equation (3.3.3-1) with respect to the same parameter o_ yields

PEP-D's variational equations

t.
dt 2 -

3(SMi) (l_ v) YCbl
3a r31 +

GM----L(1- v) fed

cl_I t 0"_ aff-_ e ClK I

+ cla + cl--_ + cla + -g-dJ

(3.4-1)

with the initial condition at t = to

aR_z_ aR;lo
clof clo_

(3.4-2)

Unless estimating the mass of the moon, the first term in (3.4-1) is zero.

Additionally, since the mascon masses were not estimated in this thesis, the

ratio t} was considered constant.

The effect of perturbing body attractions (point mass approximation)

upon the partial derivative with respect to o_ is obtained by differentiating

Equation (3.3-5), yielding

clc_

GMi [3XTi/fRT clY_i,) clXa ]- Z r_ k r_] _ a cla ) clot
i=e,s,p

(3.4-3)

3.4.1 Effect of Lunar Spherical Harmonics on the Partial Derivatives

The effect of the lunar gravitational harmonics upon the partial

derivatives of satellite motion with respect to a parameter o_ is obtained by
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differentiating Equation (3.3.1-1) term by term.

series summations can be regrouped for numerical algorithms.

equation takes the form

After differentiating, like

The resulting

aq, a(GM,) 6M, rc.+f ]
-ff--aa= G M t _ _- r----_blt

(3.4.1-1)

where Z is the series expansion for the zonal terms and T is the series

expansion for the tesseral terms. The first term in (3.4.1-1) is set to zero unless

attempting to estimate the mass of the moon. 7,, the zonal series expansion,

is provided by the following expression:

Nz

Jn

n=2

___ Osin¢
OJ,, (n + l)Xbt pn _ p,,, rbt _ +
"_ Y bl

(n + l)[ °_blrbl(_a (n "--12"Xbl ( _'_l °TXbl )lPn +r_lc_Ot

(n + 1) Osin _ _,_ + Xbl

rbl , rg_bl _) o_

--rbl

T

OY_btOa

Osin¢ Osin¢ p_,
- rbt O_bt c)a

t';,

(3.4.1-2)

The first term in the above equation is zero since the zonal coefficients are

constant.

After grouping like terms, the series expansion for the tesserals, T,

reduces to the following expression:
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Nt n

n=2 m=l

- }_cosmO +-_smmO x

I IT j-- °_sin _ F (n + 1)Xbl-_ -- q-

Pnm rbt OXbl nm rbl

mO BO IT

[C.m cosmO + g.m sin mO]T1 +

m[_,,,,,costa0-C,,msir,,n0]_
(3.4.1-3)

The first two terms in this expansion are zero since the tesseral spherical

harmonic coefficients are constant. The expansion for T1 and T2 are then

+

(n+l)

T

rbiIBLs_'m_q__]r_OXb_Oa)

rb, O_b, Y(_ _ + Xb,

Oa
Pnm

Osin¢,}da

+

_m

(3.4.1-4)
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(n+l)

rbl

32 0 I Trbl 3_bt3a -

(3.4.1-5)

The recursive formulas for calculating Pn, Pn, Pn', "ffnm, "ff_m, and Pnm

in terms of their argument sine are included in Appendix A.

Additionally, based upon the transformation between selenographic

spherical coordinates and the inertial frame (3.2-4), (3.2-5) and (3.2-6), the
following partial derivatives are obtained.

rb' -_ - R3 - - cTof J + _ Xb' (3.4.1-6)rbl

t
moflx_,,

r 3 2L _, r,,Jt a_ )
3R3 sin ¢ 0Rbl Rbi <gsin¢

8a rbt 3a rbl &Z

(3.4.1-7)

(3.4.1-8)
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[,gG ,_,1 sir, o] -cos 0 - _a

sin0+

4rblsirt_cTsin_l c90 I Tcos ¢ <Ta <TRb_

COS

#'bl

(3.4.1-9)

PEP has the option of using different degrees of spherical harmonic

models for calculating the partial derivatives in Equation (3.4-1) than for

calculating the satellite motion in Equation (3.3-3) or (3.3.3-1). Since

calculating the effect of the harmonics is such a tedious process, calculating

the partial derivative's harmonic effect with a lower degree spherical

harmonic model can save quite a bit of computer time. This option works

well for high altitude earth satellites where J2 dominates the other harmonic

effects. This option was found impractical for low altitude lunar satellites, so

the same degrees Nz and Nt were used as the summation upper limits in

Equations (3.4-1) as in (3.3.3-1).

3.4.2 Effect of Earth Spherical Harmonics on the Partial Derivatives

The effect of earth harmonics on the partial derivatives of satellite

motion with respect to a parameter 0c is calculated by differentiating Equation

(3.3.2-1). This calculation involves differentiating two factors of the form of

Equation (3.4.1-1) since the effect of the earth harmonics on the moon must be

subtracted from the effect of the earth harmonics upon the lunar satellite. For

this thesis, the effect of earth harmonics upon the partial derivatives were

neglected in Equation (3.4-1) because all of the orbits propagated were low

altitude ones:

(3.4.2-1)
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3.4.3 Effect of Mass Concentrations upon the Partial Derivatives

The effect of mass concentrations on the partial derivatives of satellite

motion with respect to a parameter ot is obtained by differentiating Equation

(3.3.3-3) assuming that the total lunar mass remains constant.

GM, (3.4.3-x)
_9-_ -- i=1 I. " bi [.. " bi \ _)OL, _90_ 0(9[ 1"3i

The above equation was not coded into PEP-D. The partial equations

were calculated on orbit fitting runs and all of the orbit fitting was done to

spherical harmonic models. The spherical harmonic plus mascon truth

model was run to generate the satellite observations for each gravitational

sensing method, for which partial derivatives were not required. If PEP-D

was used to estimate coefficients in a spherical harmonic plus mascon model,

this equation would be required and could be used in an estimation fit which

varied the mascon strength and location.

3.4.4 Effects of Initial Conditions on the Partial Derivatives

The partial derivatives of the satellite's initial conditions with respect

to a from Equation (3.3-4) (used as initial conditions (3.4-2)) are zero unless

the parameter itself is a satellite initial condition. For the cases where a is a

Cartesian coordinate initial condition, the partial derivative is obtained from

the following relation.

-I--
O Xbto

OXbto

-100000"

010000

001000

000100

000010

000001

(3.4.4-1)

Rather than solve the partial derivatives with respect to inertial

Cartesian initial conditions, PEP uses the partial derivatives of the initial

osculating elliptical orbital elements (ao, e0, i0, f_0, COo, M0) or (ao, eo, i0, f20,

(f2+co)0, (fl+co+M)0). The osculating orbit is the one which would result if the

disturbing forces in Equations (3.3-3) or (3.3.3-1) were instantly "turned off"

and the satellite's motion continued along the two-body orbit defined by the
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central body force. These orbital elements, like the Cartesian coordinate state

vector, completely describe the satellite's initial state. Calculating the partial

derivatives with respect to the initial osculating elliptical orbital elements is

numerically more efficient because only the partial derivative with respect to

the initial osculating semi-major axis grows with time. Reference [6] contains

the formulas for the partial derivatives of the initial conditions with respect

to the initial osculating elliptic orbital elements in the integration coordinate

frame.

3.4.5 Checking Partial Derivatives by the Difference Method

To verify that partial derivatives were being calculated correctly, they

were checked using a finite difference method. This method was used to

check both position, )_, and observation partials. For these checks, orbits

and/or observations with partials were generated with two different values of

the parameter o_ (cq and o_2). The finite difference method then verifies the

partial derivatives of the quantity of interest, F (scalar position coordinate or

theoretical observation), by verifying the following equality.

1I2 _dT I_=1 + _°'-}1"]a=a2 = Fla=a,__O:l- Fl°_=a2--O_2 (3.4.5-1)

This check allows coding errors to be detected and verifies the proper

execution of the program. Once coding errors are fixed and the program is

being run properly (appropriate control inputs are used), the orbit fitting

process generally converges to a solution. If the program is running properly

but has difficulty converging upon a solution, this indicates that parameters

are too highly correlated, the observations do not provide adequate

observability, or the fit model is an inadequate representation of the observed

behavior.
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Satellite Observations

4.1 Observation Simulation and Processing

Knowledge of the world in which we live is based upon observations,

or measurements, of physical phenomenon. Theories that attempt to explain

and model natural occurrences are developed to explain previous

observations and are validated by accurately predicting future behavior. The

discovery of the planet Neptune is an example of the impact observations

have upon the development and refinement of theoretical models. After the

discovery of Uranus, astronomers could not reconcile observations of the

planet's motion with theoretical predictions. English astronomer John Couch

Adams and French astronomer Urbain-Jean-Joseph Le Verrier, independently

studying the motion, concluded that Uranus' behavior was due to a planet

beyond it. Using a new model, both astronomers were able to predict the

location of this ultra-Uranian planet, and shortly thereafter Neptune was

discovered [10, pp. 472-473].

The Planetary Ephemeris Program (PEP) was designed to process

observations of the sun, moon, planets, stars, and spacecraft and to further

scientific knowledge through this observation processing [8]. PEP processes

observations of interplanetary, earth, and lunar spacecraft using observation

files. These files, based on actual astronomical observations or simulated

observations, are made up of observation series. Observation series are

limited to a single sensing method (Section 4.2) and a pair of observation

types (Section 4.3). Multiple observation methods, types, periods, and

frequencies are accommodated within PEP by either including more than one
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observation series in an observation file or by using more than one

observation file at a time.

To optimally estimate a spherical harmonic expansion fit to the lunar

gravity field for this thesis, PEP generated simulated "truth" model

observations based upon the observation geometry and measurement type

being evaluated. Observation series for each observation geometry and

measurement type were created using PEP's dummy observation feature

where output observation files were created from knowledge of earth-based

observing sites, and observing and observed satellite states determined from

numerical orbit propagations which used the gravitational "truth" model.

These observation series included each method's associated measurement

error - an indication of the statistical accuracy of any given measurement.

The error values used were based upon published or calculated instrument

capabilities. During the fitting process, the observation files were read and

these errors were used to weight the observations.

Treating the "truth" model observations as real, PEP fit a spherical

harmonic model to these observations. Using first guesses for the fit model

coefficients and satellite initial osculating orbital elements, the equations of

motion and the equations for the partial derivatives of the motion with

respect to these quantities were numerically integrated. From the numerical

integrations, the theoretical observation values were determined.

Observation residuals, the difference between the "true" observations and the

theoretical values calculated, and the observation partial derivatives were

computed and written to an observation output file. This file was later used

to update the guess for the gravitational coefficients and orbital initial

conditions.

There was no measurement noise added to the "truth" modei

observations in this thesis. White measurement noise could be added using a

random number generator, with any non-zero measurement biases estimated

by PEP.

Both "truth" model and theoretical observation values depend upon

the location of the observing site, the observation time (signal receive time),

the location of the observed body at reflection time, and any distortion factors.

PEP determines the receiving site's position or state at signal receive time in
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the inertial Cartesian coordinate frame based upon integration or n-body files.

For observation processing in cis-lunar space, position is determined relative

to the center of the earth. For extremely precise observations, PEP can

perform the light time iterations with the center of mass of the solar system

as the center of the inertial coordinate system.

The distance between the observed body at a guessed reflection,

transpond, or transmission time and the observing site at receive time is

converted to light time, and the reflection, transpond, or transmission time is

adjusted until the difference between the reflection, transpond, or

transmission time and receive time is sufficiently close to the distance

between the bodies converted to light seconds.

For two way observation signals, this process is performed twice. The

first iteration is used to determine the reflection time and state of the

observed body. The second step uses the reflection time (less any systemic

delays) and state of the observed body to compute the signal source's send

time and position. Bent pipe observations perform these light time iterations

as many times as necessary to recreate the path of the electromagnetic signals

from signal receive time back to its origin.

4.2 Observation Methods

Astronomical observations are collected using several different

methods. The most common observations are taken from earth sites. These

can be observations of celestial bodies or man-made spacecraft in earth, lunar,

or interplanetary orbits. Additionally, satellite based observations are made of

other satellites or of sites on the earth or lunar surface. Finally, bent pipe

observations are made in which a signal is passed among multiple satellites

and sites. PEP can simulate observations using each of these methods and can

also model physical effects which affect these observations.
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4.2.1 Earth-Based Observations

PEP contains the coordinates of several earth based sites to process

astronomical observations. DSN sites are included in cylindrical coordinates

and most other locations are in spherical coordinates. Observation sites not

already included can be added to PEP. This will permit the creation of lunar

observation sites. If a lunar base or navigation site were established, PEP

could process lunar-based observations in the same manner used to process

earth-based observations, after some straightforward software modifications.

When an earth-based site is involved in an observation, the site's

inertial location with respect to the center of the earth must be determined to

calculate the theoretical value of the observations. Given an observation

receive or send time in UTC time (as disseminated by the U.S. Naval

Observatory Time Service Radio Station, WWV, and other time services),

PEP determines the coordinate time (CT), UT1 time, and earth wobble

coordinates from look-up tables. International Astronomical Union (IAU)

expressions for the sidereal time as a function of UT1 time and the earth

precession-nutation matrices as functions of CT time are then evaluated. PEP

transforms the observing site's earth fixed coordinates to the integration

frame coordinate system using the transformations described in Appendix

C.2. PEP can also calculate the partial derivatives of the observing site's

integration frame coordinates with respect to cylindrical or spherical

coordinates. This feature allows PEP to improve the estimate of the

observation site's location in earth fixed coordinates as part of the process. As

lunar sites are established, PEP can therefore survey the site's location by

processing satellite-, earth-, and lunar-based observations.

4.2.2 Satellite-Based Observations

PEP also allows observations when a satellite is the signal receiving

and/or sending site. In this case, PEP uses the satellite's integration file to

determine its state and the partial derivatives of the state at receive,

bounce/transpond, or send time. When using a lunar satellite for

observations, the satellite's state and partial derivatives are translated from

lunar- to earth-centered coordinates. The lunar satellite's state and any partial
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derivatives at receive, bounce/transpond, or send time are determined using

the interpolation methods described in Section 3.1.

4.2.3 Bent Pipe Observations

PEP also processes observations in which signals pass among several

satellites and sites. This coding has been used to recreate two different

ranging observations [8]. In the first method, an earth site transmitted a

ranging signal to an earth satellite which then transponded the signal to a

second earth satellite. This second satellite then transponded the signal to an

earth receiving site. The second bent pipe method used the same signal path

from the originating earth site through the second satellite, but then the

signal was transponded back to the first satellite and then transponded to an

earth receiving site. In both cases the earth sending and receiving sites can be

the same or different sites. PEP-D can process these same bent pipe

observations methods for lunar orbiting spacecraft with earth-based sending

and receiving sites. Unfortunately these bent pipe methods currently only

process ranging observations (Section 4.3.6). To accommodate bent pipe range

rate measurements, PEP will have to be modified.

A bent pipe method using two two-way coherent links has been

proposed to observe satellite motion on the far side of the moon (Section 1.4).

For this method, an earth-based observation site sends a high frequency signal

to a lunar satellite. This Doppler shifted received frequency is used to

generate a medium frequency signal for a two-way coherent Doppler loop

between two lunar satellites. The returned Doppler shifted medium

frequency is then modulated onto the received high frequency signal and

transmitted to earth, completing a second coherent loop [40]. Since this

observation method was not available for range rate measurements, it was

simulated by using two separate, unrelated coherent Doppler loops. Since the

proposed method depends on a single frequency source, the simulated

method used a perfect, non-drifting frequency source for the satellite-to-

satellite loop. This method obtained range rate observables equivalent to the

proposed method.
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4.2.4 Observation Interruptions

All observations involve the transmission of an electromagnetic signal

(light or radio waves) between sending and receiving sites and satellites.

Observations therefore depend upon a clear line-of-sight between the sites

and satellites. Multiple signal path methods depend upon a clear line-of-sight

for each path. For earth observations of a lunar satellite, the line-of-sight can

be interrupted by either the earth or the moon. The first case occurs if the

line-of-sight passes below the horizon. In the second case, the moon occults

the line-of-sight when the lunar satellite passes behind the moon. PEP

models both of these observation interruptions and deletes observations from

dummy "truth" model observation series.

Given the radius of the occulting body, PEP determines whether the

satellite is occulted by its central body using vector descriptions of the

observing site, observed satellite, and central body locations. When the

observed body becomes occulted by its central body, observations cease until

the observed body returns to view. For the gravitational sensing methods

simulated, this feature was used with a lunar radius slightly larger than the

lunar radius to eliminate poor quality observations and account for satellite

acquisition difficulties at the edges.

Given a limiting elevation angle, as depicted in Figure 4.3.1-2, PEP

determines whether the line-of-sight has passed below the observing site's

horizon using vector descriptions of the line-of-sight and the vector normal

to the observing site. PEP discontinues observations while the line-of-sight is

below the required elevation angle. This feature was not used in the lunar

gravity model estimation simulations since there is at least one observing site

facing the moon at all times (these sites are spaced around the earth's

longitude). For this thesis, the simulations used a single observing site which

made observations through a "transparent" earth rather than using several

observing sites and simulating the handing off of observation responsibilities

from site to site.
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4.3 Observation Types

In the past, astronomical measurements were limited to optical

sightings of celestial bodies involving angular measurements and sighting

times. Angular sighting observation pairs include azimuth and elevation,

right ascension and declination, and meridian crossing and elevation angle.

More recent astronomical measurements involve electromagnetic waves

being transmitted through space. Electromagnetic signals may be reflected,

transponded, or transmitted by man-made bodies. In addition, natural bodies

are also used to reflect radar signals. These more recent observation

techniques can provide precise interferometric angular information as well as

accurate range and range rate measurements. Independently of the

observation method used, PEP determines the signal path from send to

receive time using the light time iterations described in Section 4.1. PEP

models any effects which could bend or distort this signal path based upon the

type of observation. The aberration of light, the Doppler shift in frequency,

atmospheric refraction, ionospheric distortions, general relativity, and

interplanetary plasma effects are all modeled in PEP to determine the proper

signal path. The adjusted signal path between sending and receiving sites, _,

is then used to recreate observations.

4.3.1 Azimuth-Elevation Observations

Early astronomical sightings measured the angles between the apparent

line-of-sight to the target body and a reference frame. Azimuth and elevation

angle observations at the observing site use the vector normal to the

observing site and the plane tangent to it to describe the location of the

observed body. The elevation angle is the angle between the line-of-sight and

its projection in the tangent plane. The azimuth angle is defined as the angle

in the tangent plane between north and the line-of-sight's projection. These

vectors and angles are depicted in Figures 4.3.1-1 and 4.3.1-2.

In earth-fixed Cartesian coordinates, the vector /_ is [0 0 1]T and the unit

normal, _, is defined by the longitude 0 and geodetic latitude qbas
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cos 0 cos ¢ 1

(4.3.1-1)

L sine j

PEP transforms these vectors to the inertial coordinate frame in which F1 is

calculated using the transformations of Appendix C.2.

A A

p n

A

Tangent Plane

Figure 4.3.1-1: Azimuth-Elevation Angle Vectors in the Meridian Plane

The vector rh, which points along the meridian from the observation site

towards the north, serves as the north reference direction. This vector is

defined by the following equation:

rh = unit[_-(_, f_)_]

X North / / "q.

Figure 4.3.1-2: Azimuth-Elevation Angles and the Tangent Plane

(4.3.1-2)

The projection of the signal path, q, in the observation site's tangent plane,

F/p, is used to define the azimuth angle and is obtained by the equation

68



Chapter Four: Satellite Observations

(4.3.1-3)

Additionally, Figure 4.3.1-1 shows the projection of the signal path in the

meridian plane, qm"

The following equations are used to calculate the observed azimuth

and elevation angles. Two-argument arctangent routines should be used for

improved accuracy and to distinguish the proper quadrants [8].

elevation= sin-1 / ^_/
(4.3.1-4)

(4.3.1-5)

4.3.2 Right Ascension-Declination Observations

When an object is observed against a star background, right ascension

and declination angles can be determined from the object's relationship to

catalogued stars. Right ascension and declination are angles referred to an

inertial Cartesian coordinate system centered within the observing body or

the true equinox and equator of date. If the line-of-sight vector q is given in

the relevant Cartesian coordinate system, [xq yq Zq] T, the right ascension and

declination angles are calculated from the following relations, where once

again two-argument arctangent routines should be used for improved

accuracy and quadrant determination [8].

declination= sin-11_ /
(4.3.2-1)

.ghta cen ionto / (4.3.2-2)
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x

z

declination

right ascension

Figure 4.3.2-1: Right Ascension and Declination Angles

4.3.3 Meridian Crossing-Elevation Angle Observations

Some of the earliest observations recorded the time and elevation of a

celestial body's passage across the earth's meridian. These observations were

performed by constraining the sighting instrument in the plane of the

meridian and measuring the elevation angle as the observed body crossed the

plane. Specifying the time of meridian crossing uses the rotating earth to

determine one of the angular components of the line-of-sight from the

observing body.

A A

p n

Figure 4.3.3-1: Elevation Angle at Meridian Crossing

This method is similar to the azimuth-elevation observation with the

elevation angle constrained to the meridian plane. It is also related to the

right ascension-declination observation because the local sidereal time at
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meridian crossing, converted to radians, is the right ascension. Based upon

the observing body's orbit and rotation, meridian crossing time and elevation

angles are converted to right ascension and declination angles [8].

4.3.4 Satellite Look Angle Observations

When a satellite is the observing site, PEP defines the azimuth and

elevation angles in the satellite's pitch-roll-yaw coordinate system. The yaw

axis, _, points from the satellite to the center of the body which it orbits. The

roll axis, f, lies in the orbital plane normal to the yaw axis, making an acute

angle with the satellite's velocity vector. The pitch axis, /_, is normal to the

orbital plane and completes the right hand coordinate system. This

coordinate frame is defined for a lunar satellite's position and velocity vectors

by the relations

_t=--unit[Y¢bl], [ ]= unit X'bl x Xb_ , r = Y × ]_ (4.3.4-1)

^ X
_.dr

azimuth

A

Y
Figure 4.3.4-1: Satellite-Based Look Angles

From this coordinate system, PEP's azimuth angle is defined as the

angle about the pitch axis and its elevation angle is the rotation angle from

this point to the line-of-sight. These angles are depicted in Figure 4.3.4-1 and

the formulas for PEP's azimuth and elevation angles are given below [8].

elevation = sin-' ( Ft°/_ /

)
(4.3.4-2)
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azimuth=tan J
(4.3.4-3)

4.3.5 Interferometry Observations

PEP can also determine angular measurements from interferometer

measurements. The angle between the incoming wave and the line

connecting the two observing sites can be determined when two sites receive

an electromagnetic signal and determine its arrival time difference.

Site #2

d

#1

Figure 4.3.5-1: Long Baseline Interferometry Measurement Geometry

If the signal source (such as a radio star) is sufficiently far from two

receiving sites separated by a distance d, then the two signal paths are

considered parallel. If the signal arrives at site 2 at a time At after it reaches

site 1, then this signal has traveled the additional distance cAt, where c is the

speed of light. The angle ¥ is then determined from the relationship

W= COS-' (_) (4.3.5-1)

The theoretical value of an interferometer measurement of a satellite

is the difference between the light times from the two observing sites at the

same receive time and the satellite at the signal transmission times.

Detecting smaller At's and increasing the separation between the observing
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sites to even intercontinental distances increases the accuracy of

interferometric observations. The use of hydrogen maser atomic clocks

allows angular measurements with milli-arc second accuracy. Previously

discussed angular measurements are limited to approximately an arc second

of accuracy. PEP is coded to simulate and process these observations and

model the bias between the clocks at the two receiving sites [8].

4.3.6 Range Observations

The range between two bodies can be determined from the time delay

of a signal sent between the bodies. Range measurements depend upon a

precise knowledge of when the signal was sent and when the signal was

received. Since it is very difficult to synchronize two separated clocks, one-

way ranging measurements are not often used, except for multi-GPS satellite

observations where receiving site clock error is measured. A two-way signal

provides a more accurate single satellite range measurement since a single

clock is used to measure the time delay.

Two-way range observations can be obtained by sending a pulsed

electromagnetic signal between two bodies. The time it takes the pulse to

return to the sending site, less any known delays, reveals the range between

the bodies calculated rigorously from light time iterations. Since the

electromagnetic signal travels at the speed of light, the range is calculated

from the compensated time delay, At, as

cat
R = -- (4.3.6-1)

2

This two-way range observation can also be obtained with the

transmission of a continuous sine wave signal by shifting the phase of the

sine wave 180 ° at a certain repetition interval according to a coded pattern.

Since this phase shifting is preserved as the signal passes through space,

transponder electronics, or is reflected off of an observed body, the receiving

site can recreate the phase shifting coded pattern from the received signal. By

correlating the sent coded pattern with the received pattern over time, the

receiving site can determine the signal's round trip time delay. Using this

phase shift keying technique on a continuous sine wave signal allows the
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signal to be used for both range and range rate observations, as well as for

communications, if desired [45].

q2

ql

®

Figure 4.3.6-1: Simulated Two-Way Ranging Measurement

Two-way time delay measurements in PEP are obtained directly from

knowing the site and body positions at the appropriate times plus any

transponder delays. Transponder time delays can be determined prior to

launch or can be estimated from the measurements. Typically both methods

are used by separating the time delay into known (previously measured) and

unknown (to be estimated) parts.

4.3.7 Range Rate Observations

Range rate observations measure the rate at which the observation site

and observed body are approaching one another. These observations take

advantage of the Doppler effect upon electromagnetic signals. Since this

observation measures the change in frequency between send and receive

time, it has the same difficulty with one-way observations as range

measurements. Coherent two-way signal paths, however, provide very

accurate measurements of the range rate between two bodies.

The Doppler effect is a shift in the frequency of an electromagnetic

wave radiated, reflected or received by an object in motion. This frequency

shift is a result of the expansion or compression of electromagnetic waves

along the direction of a moving source [43]. This compression in the

direction of motion is visualized in Figure 4.3.7-1 below. For astronomical
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range rate measurements, the frequency of the signal sent from site 1 to site 2

is shifted due to the relative velocity of site 1 at send time and site 2 at receive

time along the line-of-sight. From the light time iteration process mentioned

in Section 4.1, PEP determines this relative velodty from the state of the two

sites at the two times in an inertial reference frame.

Figure 4.3.7-1: Waves Radiated from a Stationary and Moving Source

For a range rate of /_, the one-way Doppler shift of a frequency source,

fs, is given by the formula

c
(4.3.7-1)

/_ is positive when the bodies are moving apart and the signal's frequency is

decreasing due to the Doppler shift. This formula is used to determine the

frequency received or reflected at the observed body. For radio wave

transponder observations, the received frequency is multiplied by a rational

factor q, so that the body transponds a different frequency, fs2, from the signal

it receives.

(4.3.7-2)

Once again, after transmission, this frequency shifts due to the Doppler effect

by (4.3.7-1) where fs is the send frequency from (4.3.7-2) and the range rate

depends upon the new send and receive time positions and velocities.

For approximately instantaneous send and receive times with no

transponder frequency shifting (q = 1), the round trip Doppler shift is

approximated by the single expression [43]
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Af = -2 f s _-- (4.3.7-3)

The NASA Deep Space Network (DSN) measures a coherent count of

the zero crossings of the Doppler signal, refered to as Integrated Doppler. A

DSN site sends a continuous sine wave signal towards a spacecraft at a

frequency controlled by an atomic frequency standard. The receiving DSN

station can be the same or different from the sending site because of the

network's precise synchronization. The receiving station pre-multiplies the

transmitted frequency by the spacecraft's transponder translation factor and

then subtracts this frequency from the received signal. Any system biases are

then added to this differenced frequency, if known, or they can be estimated

in the fitting process. A counter at the receiving site is incremented for every

positive traveling zero crossing of the differenced frequency. This counter is

read at uniform intervals, At, to determine the interval's Doppler frequency

shift in cycles per second (Hz). Additionally, a resolver is used to give

fractional cycle resolution of the zero crossings [36].

Within PEP, the theoretical value of this observable is the difference in

round trip phase delays at the count starting and ending receive times

multiplied by the sending frequency. PEP also accounts for any transponder

frequency translation when calculating the theoretical value of the

observation. The exact formula for the Doppler count observable is coded in

PEP [8] and is approximately equal to the instantaneous Doppler shift over the

count interval.

4.4 Partial Derivatives of Satellite Observations

The partial derivatives of the theoretical value of an observation are

required, along with the observation residuals, to estimate orbital initial

conditions and parameters. The theoretical value of an observation is a

function of the receiving site coordinates at signal receive time, the observed

body's coordinates at transpond time, the sending site's coordinates at send

time, and other parameters. If bent pipe observations are used, the theoretical
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value is also a function of any additional body's coordinates at the appropriate

times. For a given observation, F, this functional relationship is denoted by

F(tr) = f(Y_,:s.(tr),X_.s.(tt),Y_.s.(t_),...,_) (4.4-1)

where tr is the receive time, r.s. is the receiving site, t.s. is the transponding or

reflection site, tt is the transpond or reflection time, s.s. is the sending site, and

ts is the send time. The ellipses denote that F may be a function of other

coordinates at other times, depending upon the observation method. ]_ is the

vector of parameters besides motion which affect F.

As the theoretical observations are determined, their partial

derivatives with respect to the coordinates of interest can also be calculated.

Depending upon the type of observation, PEP also calculates the partial

derivatives of the observation with respect to the parameters, ]_, which affect

the observation, such as measurement biases and transponder delays. The

partial derivative of the theoretical observation, F, with respect to a parameter

of interest, o_, is then calculated by the chain rule.

The parameter o_ would be any parameter to be estimated, such as orbital

initial conditions, gravitational harmonic coefficients, observing site

coordinates or observation biases. The partial derivative of a satellite's

coordinates are determined by interpolation from the satellite's integration

file using the methods discussed in Section 3.1. The partial derivative of a

site coordinate is a function of the site's spherical or cylindrical coordinates.

Once calculated, these partial derivatives are written to an observation

output file for each receive time for each observation type in an observation

series. The theoretical observations, their partial derivatives, and the

observation residuals for each observation series on the output file can then

be used to calculate adjustments to the parameters 6.
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Chapter Five

Parameter Estimation
and

Prediction of Uncertainty

5.1 Parameter Estimation

Estimation is the process of extracting information from a collection of

observations (measurements) to develop a better understanding of the

observed behavior. For this thesis, the parameter estimation process attempts

to obtain the best set of lunar gravitational harmonic coefficients. The values

obtained in the estimation process are best in the sense that the estimated

model's generated observations provide the closest match with the "truth"

model simulated observations. This does not mean that a better fit could not

be realized with more or different "truth" model observations. It also does

not imply that a better fit could not be obtained with a better model of the

behavior. The estimation process additionally provides insight into the

uncertainty of the estimates' ability to model the behavior. This information

can be used to analyze and evaluate the estimated model.

5.1.1 Observation Vector as a Random Variable

Using the gravitational "truth" model, observations were generated for

several proposed sensing schemes. These observations are dependent on the

lunar gravitational field and orbital states of the satellites. Together these

observations form the N-dimensional vector _ where N is the total number

of measurements.

pF_ECEDi?]G P,'WqE BLANK _CT FIL&iEO
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With initial guesses for 1) the lunar gravitational field coefficients,

2) satellite initial conditions (initial osculating orbital elements for each

satellite used in the sensing scheme), and 3) measurement biases, theoretical

values of the estimated model observations, the difference between the two

sets of observations, and the partial derivatives of the estimated model

observations are generated. The estimated model observations' theoretical

values are a function of the observation time, the estimated model

parameters, and other factors, such as the positions of the observing sites.

These other factors are treated as known quantities for the estimation process.

Let _g be the vector of unknown gravitational parameters and /J be the

vector of unknown measurement biases and any other unknown parameters.

For a sensing scheme with Nb satellites, there are Nb vectors g¢ of unknown

orbital initial conditions. If _ is the vector of all of these unknown system

parameters, then the theoretical observation at time t is a function of t and _.

_g = [J2 ..... JNz i_21 . -_NtN ' i_21 ...._NtN , IT (5.1.1-1)

6n=[a,o %0 i,0 f2,0 a;,o M,o] T (5.1.1-2)

I-_ [_g _1T ... _T b ]_T IT (5.1.1-3)

Due to imperfect knowledge of the gravitational field coefficients and

satellite initial conditions and the difference between the fit and truth

models, the theoretical observations do not perfectly recreate the "truth"

model observations. For each measurement time, t, there is a measurement

error, 0(t), between the "truth" model and theoretical observations. With the

"true" values for the parameters _, the remaining measurement error, 0, is

assumed to be a zero-mean random variable (disregarding the difference

between the fit and truth models). Since 0 is the result of several

independent random causes, it will be assumed to be normally distributed by

the central limit theorem. The collection of N measurement errors over the

observation period is then _.

From the previous definitions, it follows that the vector of

measurements is a random vector composed of a deterministic value, the

theoretical observation, and a random quantity, the measurement error.
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z,(t,)
z_(t_)

zN(tN)

f,(t,;a) l

= 1
fN(tN;a)J

70,]
02

_oNJ
or (5.1.1-4)

_" = f(t;c_) + 0

Since the measurement error, 0, is assumed normally distributed, the

measurement vector is also normally distributed with the following statistics:

/i = E{2}= E{flt;a)} + E! 0"_ = f(t; c_) (5.1.1-5)

E{(_' - fi )(_. - fi)_} = E{_;O '1,J = 0 (5.1.1-6)

5.1.2 Maximum Likelihood Estimation

The maximum likelihood estimate selects the parameters _ such that

the probability of _,, the likelihood function, is maximized. This method

estimates parameter values so that the "truth" model observations are the

most likely ones to have occurred. Since _ is a normal random variable, its

probability density is the normal joint probability density:

1 exF [--_( _-f(t;6 )}To-'(_--f(t; 60) ] (5.1.2-1)p(_';c_)= _(2x)_lo I

The maximum likelihood estimate maximizes the likelihood function

(5.1.2-1) and minimizes the negative log-likelihood function below:

_'(_; a)= - ln[p(_'; a)]

¢(_;a)= [_h_(=.)+{h_,le )]+½(_- f(t;a)) T

^

The maximum likelihood estimate

(5.1.2-2)

0-'(_- f(t;6))

(5.1.2-3)

therefore satisfies the equation
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T

= 0 (5.1.2-4)

The maximum likelihood estimate & is obtained starting with an

initial guess of the parameters, 60. Based upon the theoretical observations

generated with e_0, adjustments, A_, to the guessed parameters are sought

such that

na = a-ao (5.1.2-5)

Expanding Equation (5.1.2-4) in a Taylor series expansion about 6 o yields

(d_'(Z';C_)_T I _( °_'(_';c_)'Y] A_+O(A_ 2) (5.1.2-6)

The parameter adjustments, a_, are determined by taking the partial

derivatives of the negative log-likelihood function from Equation (5.1.2-3)

(assuming that the term in brackets does not depend on the parameters 6)

and by neglecting the higher order terms in the Taylor series expansion. The

second derivative of the negative log-likelihood function with respect to _ is

replaced with its expected value, which can be theoretically expressed as the

expected value of the dyadic product of first partial derivatives [42]:

E _ =E
(5.1.2-7)

Assuming that O does not depend on _, Equations (5.1.2-3) and (5.1.2-7) imply

Replacing the Hessian of second partial derivatives in Equation (5.1.2-6) by its

expected value (the Fisher information approximation) leads to the linear

matrix equation, called the normal equations, for the adjustments to the

parameters. These equations are formed with the partial derivatives of the

theoretical observations with respect to the estimated parameters, the

observation residuals, and the measurement error statistics.
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AAc_ =/_

or

(5.1.2-9)

5.1.3 Weighted Least Squares Estimation

Least squares estimation selects the parameters _ so as to minimize the

sum of the squares of the deviations between the "truth" model and

theoretical measurements. For N observations, the least squares estimate

seeks to minimize the quantity

N

Q= ___(zi _ fi(t i ;_))2 (5.1.3-1)
i=!

If the measurements are of varying quantities and units, and some

measurements are more reliable than others, the weighted cost function Q is

used.

Q = __, (zi- fi(ti; c_"2_ (5.1.3-2)
i=1 Wi

where Wi is a sequence of weighting values [21]. A sequence of observations

may involve a wide variety of physical quantities, i.e. distances, angles,

temperatures, frequencies. Typically the error weightings non-

dimensionalize these disparate measurements in the cost function.

The least squares or weighted least squares estimate is found by setting

the derivative of the cost function with respect to the estimation parameters

equal to zero.
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5.1.4 Choice of Estimation Method

The weighted least squares and maximum likelihood methods provide

the same estimates if the measurement residuals, 0, are uncorrelated.

E{o,o,}=o v i,j
By assuming that this measurement noise is uncorrelated, the covariance

matrix, 0 defined in Equation (5.1.1-6) becomes the diagonal matrix

-..

o -2 0 ... 0

0 0.2 ... 0

0 0 ... 0.2

(5.1.4-2)

where 0 "5. is the variance and dr, is the standard deviation of the n th

measurement. Inserting this diagonal matrix into Equation (5.1.2-1) and

(5.1.2-3) for the likelihood and negative log-likelihood functions results in the

following:

p(_;a) =
(2=fi o-1..-o-N

exp-½ (zi - fi(ti;_))2

.= 0 .2
(5.1.4-3)

4"(_;a)= [-_tn(a.)+ tn(o',...o-_)1+-_N (Zi- fi(ti;a) 2

Y--" ot
i=1

(5.1.4-4)

Both the maximum likelihood and weighted least squares estimates

are determined by setting the partial derivative of a cost function with respect

to _ equal to zero. Since the maximum likelihood estimate assumes that the

constant part in brackets [ ] from (5.1.4-4) does not depend upon the

parameters _, the two methods (compare Equations (5.1.3-2) and (5.1.4-4))

provide identical estimates when uncorrelated measurement error variances,

a_, are used to weight the measurement residuals• Since PEP's parameter

estimation routine assumes uncorrelated measurement errors, its estimation

technique is referred to as least squares maximum likelihood estimation.
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5.1.5 Incorporation of A Priori Information

Frequently, existing models provide a priori information about some

of the estimation parameters. The estimation process can be shortened or

simplified by including this a priori information in the normal equations.

Suppose a priori information has estimated the value of the parameter

as h i with an uncertainty, or standard deviation, of 6"i. These a priori

parameter values are then grouped into the m-dimensional vector t_, where

m is the total number of parameters estimated. A zero value is assigned to

any parameters when no a priori knowledge is available. The variances of

the a priori estimates are collected into the m x m diagonal matrix E. For any

parameters without a priori standard deviation information, their diagonal

element is infinity, although in practice some reasonably large value will

suffice. A full covariance matrix can be used for E if correlations are

available for the a priori parameter estimates ¢_.

With a priori information, instead of minimizing Equation (5.1.2-3),

the following functional is minimized [11].

Q T I _ + _= f(t;a)) (_-(z f(t'p_)) (_ _)W __l((___(_)(5.1.5-1)

For parameters where no a priori standard deviation information is available,

the cost function remains the same as in (5.1.2-3).

Setting the partial derivative of this cost function with respect to the

parameters _ equal to zero and making the same assumptions as in Section

5.1.2, yields the following linear matrix equations.

3a

such that

+ _-' (5.1.5-2)

(5.1.5-3)

Ate= A-1/ (5.1.5-4)
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From studies of the earth's gravitational field, William Kaula proposed

an empirical relationship for the variance of the gravitational harmonic

coefficients [24]. Estimates of the lunar gravitational harmonic coefficients led

him to believe that the same relationship was valid. For the lunar

coefficients, Kaula adjusted the constant coefficient to account for the

gravitational field strength difference between the moon and earth [37]. From

their studies of the lunar gravitational field, Bills and Ferrari chose a slightly

different semi-empirical formula for the covariance; one which had been

proposed by Vening-Meinesz. After having difficulty converging upon

gravitational harmonic coefficients, Bills and Ferrari included the Vening-

Meinesz a priori covariance information and developed a 16 x 16 lunar

spherical harmonic potential model with coefficient uncertainties [12].

Research scientists at JPL continue to use this method to develop 50 x 50, and

even 75 x 75 spherical potential models of the moon [27].

The method of incorporating a priori information into the normal

equations was not used for these simulations. This thesis evaluates

gravitational sensing schemes which may be employed to develop gravity

field models. As such, an arbitrary lunar gravitational "truth" model was

developed and there was no a priori information available regarding this

"truth" model. When a gravitational sensing method is selected and its

mission flown, a priori lunar gravitational field information can and should

be used in the development of new gravitational field models.

5.1.6 Solution to the Normal Equations

Since the normal equations [(5.1.2-9) or (5.1.5-4)] are linear, the

adjustments to the parameters can be solved by various numerical

techniques. PEP uses the Gauss-Jordan method to simultaneously solve the

normal equations and invert the coefficient matrix. This method uses

diagonal pivots without interchanging rows or columns, so that only the

lower diagonal half of the symmetric coefficient matrix A is stored in

memory.

Numerical problems can arise if the coefficient matrix is ill-

conditioned. This could happen if the vector of parameter adjustments A_

86



Chapter Five: Parameter Estimation and Prediction of Uncertai.nty

consisted of widely different sized quantities or quantities with widely

different units. To prevent these numerical difficulties, PEP scales the

normal equations prior to solving them. This process scales each row and

column of the symmetric coefficient matrix by the square root of the diagonal

element. To preserve the equality, each row of the right hand side vector is

also scaled by the same factor. After the adjustments to the parameters are

solved, PEP unscales its rows to provide the proper units and values to the

parameter adjustments [8].

This scaling process can be avoided by using the square root of the

normal equations [11]. This method takes advantage of the properties of the

symmetric coefficient matrix and, by using the square root of the normal

equations, lessens the effect of disparate units or scale factors. The JPL orbit

fitting software uses this method [27].

Since the equation for A_ was obtained by neglecting second and

higher order terms in a Taylor series expansion, this adjustment will not

yield _ exactly. An iterative technique must be used to approach a maximum

likelihood estimate for the parameters. Once the parameter adjustments are

determined, the initial parameter guesses are adjusted. The equations of

satellite motion are then re-integrated and the theoretical observations,

partial derivatives, and residuals are recalculated. The normal equations are

then reformed and a second set of parameter adjustments are determined.

These iterations continue until the process converges.

5.1.7 Other Estimation Techniques

For some applications, least squares maximum likelihood may not be

the optimum method for estimating the gravitational coefficients. If noise

were included in the satellite dynamics, Kalman filtering techniques would

be more appropriate. A linearized Kalman filter about a nominal satellite

trajectory or an extended Kalman filter for which the reference trajectory is

updated for each observation could be used [31, Chapter 9]. The Kalman filter

would then estimate the gravitational parameters as well as the satellite's

state by augmenting the state vector to include them as non-dynamic state

variables.
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Since Kalman filtering techniques become extremely cumbersome as

higher degree models are estimated, a more efficient technique may be

necessary. Maximum likelihood system identification combines the two

approaches by performing a Kalman filter on the satellite state, )_*, and a

maximum likelihood estimate on the satellite's orbital initial conditions and

the gravitational harmonic coefficients [31, Chapter 10]. In this method, the

satellite's motion is propagated with a Kalman filter and then a maximum

likelihood adjustment is made to the initial conditions and parameters. The

process is then repeated until convergence.

Unmodeled forces such as radiation pressure, fuel tank leakage, and

higher order gravitational harmonic effects will cause noise in the satellite

dynamics. Because of this noise, one of these techniques should be used.

Least squares maximum likelihood estimation, however, was sufficient for

this thesis' evaluation of sensing methods.

5.2 Statistical Prediction of Uncertainty

Solving the normal equations produces information about the

uncertainty of the estimated parameters _ as well as the values of the

parameters themselves. The parameter estimation covariance matrix

provides a measure of the uncertainty of the estimates. This additional

information can be used to evaluate the resulting estimated model of the

observed behavior.

The coefficient matrix A from (5.1.2-9) and (5.1.5-4) is the Fisher

information matrix and by the Cramer-Rao lower bound, the covariance of

any unbiased estimate is greater than or equal to its element in the inverse of

the Fisher information matrix [42, 46]. Additionally, maximum likelihood

estimates have the desirable property that they are asymptotically unbiased

with the Cramer-Rao lower bound obtained as the number of observations

approaches infinity [42]. This bound only applies if the nonlinear system has

been modeled correctly in (5.1.1-4).
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If the assumed standard deviation of the measurement errors, C_n, are

correct and the modeling is correct for both the equations of motion and the

observations, the root mean square (rms) of the post-fit observation residuals

divided by the assumed measurement errors would be approximately one:

FinS = _-___ (_ - f(t; C_))TO-' (_"- f(t; C_)) (5.2-1)

Typically the number of observations is much greater than the number

of parameters, so the 1/(N-m) term is replaced by 1/N. When the above rms

differs greatly from one, the parameter covariance matrix produced by the

inverse of the coefficient matrix from the normal equations (A-l), by the

Cramer-Rao lower bound, should be multiplied by this rms to obtain a truer

estimate of the uncertainty in the parameter estimates. This adjustment

accounts for incorrect values of the measurement standard deviations, on in

®, but does not account for any modeling error effects on the uncertainty.

The parameter covariance matrix, X, is then obtained as

_=rmsxA q (5.2-2)

The standard deviation of parameter estimate t_i is

o"i = _// (5.2-3)

and the correlation between parameter estimates t_ i and &j is

Eq

tYicrj

(5.2-4)

PEP saves the matrix A -1 and the rms of the observation residuals

divided by the assumed measurement errors resulting from an estimation

run so they can be used to predict the uncertainty of an orbit propagated with

the estimated parameters _.

Let )(o* be the state of a lunar satellite at time to assumed to be known

perfectly, perhaps by determination from navigation satellite observations.

These satellite initial conditions are numerically integrated in time using the

estimated gravitational model. Partial derivatives of the satellite's motion

with respect to the parameters t_ are also numerically integrated. The state
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covariance matrix, £, for the uncertainty in the satellite state, can then be

calculated at any time t as

(5.2-3)

The standard deviation of the uncertainty in

direction is the square root of that diagonal element.

(rss) of the position and velocity uncertainties are then

rss(R) = "_/_11 q- _22 q- _33

any one coordinate

The root sum square

(5.2-4)

rss(V) = 4£44 + £,s + E66 (5.2-5)

Since the state covariance matrix E is based upon the augmented state

vector (3.3-1), it is partitioned as follows:

[£_(t) :_Rv(t)l
E(t) =LE- v(ti i (t)_ I

(5.2-6)

Often, the cross correlations between position and velocity E RV are neglected

and the covariance matrix for position E RR and velocity £ VV are used

separately to evaluate the uncertainty of orbit prediction. The state

uncertainty analyses performed for the estimated lunar gravity fields in

Chapter Seven use these individual state covariance matrices rather than the

augmented state covariance matrix.

The inertial (x,y,z) coordinate uncertainties thus obtained can also be

converted to a local vertical, local horizontal coordinate frame to provide

navigation uncertainty information. The local vertical, local horizontal

frame is defined by the vertical (VT), down range (DR), and cross track (CT)

directions. Their translations from inertial coordinates are obtained by

_VT ( t ) = unit[ Yf ( t ) ] (5.2-7)

f_cr(t} = unit[ _(t) x Y_m]

{IDR (t) -- {IVT (t) X {ICT (t)

(5.2-8)

(5.2-9)
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The transformation matrix from local vertical, local horizontal to

inertial coordinates is then

RI L (t)=[_VT(t)_,_CT(t)',_DR(t)] (5.2-10)

and this transformation can be used to obtain the covariance matrix for the

uncertainty in the satellite state in the LVLH frame.

._._ (t)= RTL (t)E_ (t) Rir (t) (5.2-11)

_VV
_L (t)= RTL (t) ._.VV (t) RIL (t) (5.2-12)

The standard deviation of the uncertainty in any one LVLH coordinate

direction is the square root of that diagonal element. With these formulas,

the uncertainty of position and velocity in the vertical, cross track, and range

directions can be calculated at each time t due to uncertainties in the

estimated parameter _x. These routines were coded in analytical software

separate from PEP and each estimated gravity model was evaluated in this

manner. This analysis was performed for both the PEP supplied covariance

matrix (A -1) and the covariance adjusted by the rms of the observation

residuals divided by the assumed measurement errors. These analyses

simulated the propagation of uncertainties onto the far side of the moon after

obtaining a navigation fix on the near side.

The previous statistical uncertainty prediction was performed using

the assumption that the lunar satellite initial state, )_, was known perfectly.

If this is not the case, the same process for calculating the uncertainty of orbit

prediction would still apply. In general, the vector of estimated parameters

would be augmented to include estimates of the satellite initial conditions

and the process repeated. Since this thesis is concerned with the uncertainty

due to a mismodeled lunar gravitational field, perfect knowledge of the

satellite's initial conditions was assumed.
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5.3 Prediction Uncertainty Due to Mismodeling

The statistical uncertainty analysis presented in the previous section is

based upon the assumption that the estimated gravitational model correctly

models the lunar gravity field. Due to the inclusion of mascons in the

"truth" model, the finite spherical harmonic estimation model could not

correctly model the observed behavior. In most real world cases there is no

way to account for or analyze the errors between modeled and true behavior

because the modeling errors cannot be separated from the other errors. For

this thesis, however, a direct comparison between the true and predicted

behavior can be made, since both the "truth" and fit models are available.

Given satellite initial conditions, )_, orbits for the truth and fit models

can be numerically integrated. At each point in time, the position and

velocity deviations between the two models can be calculated. These

modeling errors in position and velocity can then be transformed from

inertial coordinates to the local vertical, local horizontal frame using the

transformations (5.2-7), (5.2-8), and (5.2-9). The root sum square of the

position and velocity errors due to gravitational field mismodeling can also

be calculated. The impact mismodeling has upon navigation uncertainty

prediction is revealed by comparing the modeling errors with the statistical

uncertainty predictions.

Once again, using software separate from PEP, this analysis was

performed for orbits propagated from the lunar near side to the far side for

one orbital period. Additionally, the uncertainty due to mismodeling was

analyzed by comparing the "true" path of a lunar landing when the

maneuver was calculated based upon simulations using the estimated model

and then executed in the "true" lunar gravitational field. These landing

errors provide a feel for the impact lunar gravitational field mismodeling

will have upon the execution of future space missions.
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Orbit Fitting
and

Gravity Estimation

6.1 Methodology

Several different lunar gravitational sensing methods were evaluated

using the PEP orbit integration, observation generation, and parameter

estimation capabilities described in Chapters Three, Four and Five. For each

sensing scheme, the following procedures, depicted in Figure 6.1-1, were used

to generate "truth" model observations and estimate gravitational field

coefficients.

First, each sensing scheme was analyzed to determine the nature of the

satellite orbits employed, the type of observations generated, and the

observation accuracy and frequency. Using the "truth" model and these

descriptions of the observation method, PEP simulated the mission's orbits

and observations, including lunar occultations. Auxiliary software routines

converted the integration output to selenographic osculating orbital elements

(a,e,i,f_,0_,M) as well as selenographic spherical coordinates (r,0,_) versus time.

This data was plotted to analyze the orbit's stability over the integration

period (14 to 28 days). For stable orbits, the "truth" model observation file was

then used to estimate the fit model lunar spherical harmonic coefficients and

satellite initial conditions.

For the estimation process, the gravitational harmonic coefficients and

satellite initial conditions were perturbed from the "true" values used to

generate the observations. The gravity field was altered to reflect the fit

93



LUNAR GRAVITATIONAL FIELD ESTIMATION AND SATELLITE ORBIT PREDICTION

model's degree and order ("truth" model usually included mascons). From

the initial perturbed parameters, t_0, the satellite orbits were propagated,

theoretical values of the observations were calculated, and the difference

between the "truth" model observations and these theoretical observation

values (observation residuals) were calculated. Partial derivatives of the

motion and partial derivatives of the theoretical observations were calculated

with respect to all parameters to be estimated. From the observation residuals

Truth Model & _ PEP Orbit _Truth Orbit_._
Satellite I.C.'s I - I Integrati°nl r [ Integration ] - I

Input J ' ' _ File J I

"Truth" Model Observations _"Au_ap,_

PEP _ Truth _N
Observation _'_l Observation

Generation I k,_ File j

Fit Model &
Satellite I.C.'s

Gravity
Field Estimation

PEP Orbit I_ Orbit _ PEP I
Integration[_l Integration _ Observation I

_ / Partials Fil_ I Com_rison

[ Input for New ( ',
Parameter Obs. File _x

Estimates w/Partials.,/
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Analysis w/ |

EP & Auxiliary I Model Analysis
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Figure 6.1-1: Flow Diagram for Gravity Sensing Mission Simulations

and partial derivatives, the parameter estimation module formed and solved

the normal equations to calculate the adjustments to the parameters, Ate.

The size of the parameter adjustments and their uncertainties determined if
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the process had converged. If the process had not converged, the new

parameters were used to propagate the next iteration's orbit and the process

was repeated. The maximum likelihood parameter estimates and the

covariance matrix (A -1) were written to output files when the process finally

converged. These files were then used to analyze the estimated gravitational

model and its ability to predict future lunar missions.

Although this process is straight-forward, it is a very time and

computer memory intensive process. A typical 14 day orbit propagation for

an 8 x 8 spherical harmonic gravity field with partials calculated for 79

parameters typically took over eight hours on a Sun Sparcstation IPC. Also,

due to the high correlations between gravitational parameters, it was not

unusual for a run with different "truth" and fit models to require at least

fifteen iterations to converge upon a solution. The convergence criterion,

perhaps unnecessarily stringent, required the adjustments to be less than 1%

of the parameter uncertainties.

6.2 Fifth Degree Harmonic Truth and Fit Model Test Case

Since PEP was modified to include lunar mascons and expand the

degree and order spherical harmonic expansions allowable, several test cases

were run to ensure that PEP-D's modules were operating correctly. The first

set of tests involved the attempt to estimate a 5 x 5 spherical harmonic

expansion fit model for observations generated with a 5 × 5 spherical

harmonic expansion truth model. Since the degree and order of the

estimated fit and truth models were the same, this test was expected to be a

good warm-up exercise for future runs.

For these tests, a single lunar polar 200 km altitude near-circular

satellite orbit was numerically integrated for twenty-eight days. The initial

selenographic orbital elements are listed in Table 6.2-1, where elements in

parentheses are in PEP's internal units (angles referred to the mean equinox

and equator of the earth of 1950.0). A zero degree initial mean anomaly was

selected first, placing the satellite directly over the lunar north pole. Due to a

singularity in PEP's algorithm for the central body harmonic effects, it could
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not propagate this orbit. Because of perturbation forces, it would be highly

unlikely that this condition would be repeated during the middle of an orbit

propagation The mean anomaly was adjusted one degree and the process

restarted with no further difficulties.

Table 6.2-1: Satellite Initial Conditions for 5 X 5 Spherical Harmonic Test Case

a0

e0

i0

coo

M0

1938 km (1.295472995 x 10 -5 AU)

0.05

90 ° (103.1048493849350 ° )

90 o (304.1996805394721 °)

90 ° (72.2394269798987 °)

1 °

The starting time for the orbit integration was 16 May 1968 or Julian

Date 2,440,001.5 0 hour Coordinate Time. This initial epoch was selected over

an epoch in 1996 or 1997, when a lunar gravitational sensing mission might

occur, because it is near the beginning of the n-body file supplied by the SAO.

This file is read and interpolated from during the integration and observation

modules, so computer time was saved by selecting an initial epoch near the

beginning of the file. Other than saving computer time, the choice of initial

epoch should not effect the simulations of this thesis.

The lunar satellite's orbit was propagated using the first five degree and

order coefficients from the 1980 Bills and Ferrari 16 X 16 lunar spherical

harmonic model [12]. These coefficients are given in Table 6.2-2. The central

body attraction of the moon and the perturbing attractions of the earth and

sun were included in the Adams-Moulton numerical integration with a step

size of 2 -14 day. This allowed approximately 1,451 steps per 2.125504 hour

orbit. This was an extremely small step size to characterize fifth degree and

order harmonics and ensure numerical stability in the integration of motion.

The observation module then created Doppler observations of the

satellite from NASA DSN's Goldstone site every minute. Four different

observation scenarios were generated for this test case. Two involved range

and Doppler observations and two involved Doppler observations only. In

two cases observations were occulted by the moon and in the other two cases

the observations continued through a fictitious "transparent" moon.
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Table 6.2-2:5 X 5 Spherical Harmonic Truth Model Coefficients

Harmonic

J2

c21

c22

J3

C31

C32

C33

J4

C41

C42

C43

C44

J5

C51

C52

C53

C54

C55

x 10 -6

202.431

-0.07

34.49

8.8897

21.96

14.14

15.87

-11.73

-4.82

-8.13

0.48

-3.50

2.388

-9.66

3.71

-0.39

0.56

-6.69

Harmonic

B

$21

S 22

$31

$32

g33

S 41

s42
$43

s44

$52

$53

ss4
$55

x 10-6

6.63

4.76

-2.45

1.91

-6.76

-14.43

-0.55

-1.53

-2.35

4.91

-6.58

11.60

The initial test cases recreated the measurements of the Lunar Orbiter

missions (Section 1.3). The orbits were selected to simulate orbits proposed

for the Lunar Observer or Lunar Scout missions [16, 25, 39]. The observation

scheme, duplicating the processing of Lunar Orbiter data, used the DSN S-

band frequency (2.115 GHz) for collecting Doppler range rate observations for

sixty-second intervals. No transponder frequency translation was simulated.

These observations had a quoted accuracy of 1 mm/sec [29], which is the

accuracy achievable for integer Doppler counts over the sixty-second interval.

Range observations were also generated in the "truth" model observation

file. When fitting to only Doppler observations, the range observations were

given negative error weights so that they would be ignored in the estimation

process. The two way range measurement was included on the same signal

used for the Doppler observable and had a three meter accuracy. This

accuracy is based upon the ability to detect a 20 nanosecond time delay for a

two-way phase shift keyed code.
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Over the twenty-eight day observation period, the satellite would orbit

over the entire lunar surface as the moon rotated under its orbital plane. Due

to the extremely conservative integration step size, the twenty-eight day

viewing period, and the calculation of partials, these initial test cases quickly

filled up the available disk space, resulting in a system crash. Reevaluating

the simulation requirements, the observation period was reduced to fourteen

days, which still provides complete lunar coverage in either an ascending or

descending pass.

After the "true" observations were generated, the satellite initial

conditions and thirty-two lunar harmonic coefficients were perturbed to

provide the first guess for the estimation process. Each gravitational

harmonic coefficient's absolute value was increased by 1.0 x 10 -7. The orbital

initial conditions were altered by the values given in Table 6.2-3. The satellite

orbit was then numerically integrated along with partial derivatives.

Table 6.2-3: Perturbed Satellite Initial Conditions for Estimation Model

5a 149.6 km (1.0 x 10 -11 AU)

8e 1.0 x 10 -5

8i -1.0 x 10 -4 o

-1.0x 10.4o

6o -1.0x 10.4 o

5M0 1.0 x 10.4 o

These tests were run using saved partial derivatives of motion. Using

this feature, partial derivatives were calculated during the first iteration step

and these saved partials of motion were used to determine the partial

derivatives of observations on subsequent iterations. Computation time was

saved by not recalculating the partials on each iteration. This approach

worked well for test cases with the same "truth" and fit models, but was not

effective on other simulations. In general, this feature is very effective when

the process is close to convergence.

The fitting process revealed that all of the harmonic terms included in

the equations of motion have to be included in the partial derivative

calculations. By default, PEP was only calculating the second degree harmonic

effects upon the partials. This provides sufficient accuracy for earth satellites
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where the J2 effect dominates motion, but it was not sufficient for lunar

satellites. Additionally, the first scenario's slow convergence raised concerns

about the choice of initial osculating orbital elements. For a circular orbit, the

argument of perilune (co) is undefined. For the near-circular orbit, the

perilune position was very difficult to determine. The argument of perilune

and mean anomaly were difficult to estimate because of their high

correlation. PEP software does not currently use equinoctal orbital elements

[e sin(f_ + co), e cos(f2 + co)], but it provides the option of replacing the f_, co, and

M orbital elements with the sum of the angle elements f_, fl + co, 12 + co + M.

After the initial orbital elements were converted to this form, their

correlations were reduced and the parameter estimation routine had no

difficulty estimating these parameters.

After overcoming the previously mentioned difficulties, the

simulations converged in three iterations for all four scenarios. After these

test cases, a fifth scenario was run in which radar biases for the time delay and

Doppler shift observations were estimated along with the gravitational

parameters and satellite initial conditions. This scenario evaluated the

estimation procedure's ability to handle measurement bias estimates and also

converged in three iterations.

6.2.1 Scenario One: No Occultation, Range and Range Rate

The first scenario calculated a spherical harmonic fit model based on

20,156 time delay (range) and 20,156 Doppler shift (range rate) observations

over the fourteen day period. Observations were processed every sixty

seconds for the entire period since there were no horizon or occultation

restrictions. The thirty-two gravitational harmonic coefficients and six initial

conditions were all estimated within approximately ten digits of accuracy for

each parameter (six digits for angular initial conditions). The observation

residuals divided by the assumed measurement errors, referred to as the non-

dimensional "fit residuals", had a root mean square (rms) value of 7.45263 x

10 -4, essentially zero. The theoretical rms for these cases is zero, as opposed to

the value of one mentioned in Section 5.2 because the "true" observations

were exact (without measurement noise) and the truth and fit models are of

the same degree and order. The run also calculated correlations as high as
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-0.998 between the C33 and _53 coefficients and $32 and $52 coefficients.

Fifteen of the 703 correlations were greater in magnitude than 0.95. Initially,

these high parameter correlations seemed as if they were due to a resonance

in a particular harmonic frequency, but later fits to higher degree models also

demonstrated high correlations for the higher degree terms.

6.2.2 Scenario Two: No Occultation, Range Rate

This scenario excluded the 20,156 time delay (range) observations from

the previous run's fourteen day period in its estimation of the spherical

harmonic fit model. Once again the thirty-eight parameters were all

estimated with approximately ten digits of accuracy and the fit residuals were

essentially zero, with an rms value of 8.83418 x 10 -4. The highest parameter

correlation was again -0.998 between C33 and C53. The $33S53 and $32S52

correlations were the second highest at -0.997. The $33 and 553 correlation

was up from -0.996 in the previous scenario. Once again fifteen of the 703

correlations were greater in magnitude than 0.95.

6.2.3 Scenario Three: Occultation, Range and Range Rate

After the previous scenarios were completed, the "truth" model

observations were recreated with lunar occultations. This third scenario then

calculated its fit model based upon 15,672 time delay (range) and 15,672

Doppler shift (range rate) observations over the fourteen day period. Lunar

occultations eliminated 3 days, 2 hours and 44 minutes of observations over

the fourteen day period. Again the thirty-eight parameters were estimated to

within ten digits accuracy of their "true" values. With the reduced

observability, fit residuals increased, having an rms value of 2.54901 x 10 -3.

Although these residuals are larger, the fit model is still essentially exact. The

parameter correlations for this scenario essentially repeat those of the first

scenario with the c33c53 and $32s52 coefficients having the highest

correlation (-0.998). As in both previous cases, fifteen of the 703 correlations

were greater than 0.95.
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6.2.4 Scenario Four: Occultation, Range Rate

This scenario excluded the 15,672 time delay (range) observations from

the previous run in its estimation of the gravitational coefficients and orbital

initial conditions. The scenario's fit model agreed with the truth model to

about nine places. The fit residuals for this scenario were up from the

previous scenario with an rms value of 6.86066 x 10 -3. The highest parameter

correlation was the C33C53 correlation (-0.999). The $32S52 and $33S53

correlations were once again close behind (-0.998). As before, fifteen of the 703

correlations were greater than 0.95.

6.2.5 Scenario Five: Occultation, Range and Range Rate with Biases

This scenario used the 15,672 time delay (range) and 15,672 Doppler

shift (range rate) observations from the third scenario and attempted to

estimate the thirty-two gravitational harmonic coefficients and six orbital

initial conditions as well as measurement biases for the time delay and

Doppler shift observations. This scenario estimated the gravitational

coefficients and initial conditions with about nine places of accuracy.

Additionally it estimated a 1.43121 x 10 -9 second time delay bias and a -4.37639

x 10 -9 Hz Doppler shift bias. No biases were included in the observations and

this run essentially estimated zero biases. The fit residuals were lower than

the fourth scenario's with an rms value of 6.10319 x 10 -3, also essentially zero.

The C33 and C53 coefficients once again had a -0.999 correlation with the

S 32 S 52 and S33 S 53 parameters yielding the second highest correlations (-0.998).

Fifteen of the 780 correlations were greater than 0.95.

6.3 Earth-Based Doppler Observable Mascon Test Cases

The second set of tests included two small mascons in the truth model

and increased the degree of the spherical harmonic fit model. This test case

was run to determine whether PEP-D could estimate a spherical harmonic

model based on observations with a different truth model and to determine
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whether the sensing geometry affected the estimate's ability to model the

lunar gravitational field.

For the first scenario, the previous 5 x 5 spherical harmonic expansion

(Table 6.2-2) was augmented with two mascons of equal strength placed at the

limbs of the moon on the equator. For the second scenario, the 5 x 5 model

was augmented with mascons of equal strength placed on the front and back

faces of the moon, still at the equator. Mascons were included in pairs to

preserve the center of mass of the moon and avoid solving for first degree

harmonic coefficients. The strongest surface disk estimated in the Wong

model [47] was selected for the strength of these mascons whose strengths and

locations are listed in Table 6.3-1.

Table 6.3-1: Mascon Test Case - Mascon Placement

mi

ri

0i

Mascon on Limb Mascon

1 2 1

7.212 x 10 -6 7.212 x 10-6 7.212 x 10-6

1680 km 1680 kin

90.0 °

1680 km

270.0 ° 0.0 °

0.0 ° 0.0 ° 0.0 °

on Face

2

7.212 x 10-6

1680 km

180.0 °

0.0 °

The same lunar polar 200 km altitude near-circular satellite orbit was

numerically integrated for fourteen days over these two lunar gravitational

fields. For both cases, the orbit integration was once again started on 16 May

1968 and used the same satellite initial conditions as in the previous tests

(Table 6.2-1). The lunar polar satellite's motion was detected by the same

earth-based Doppler shifted observables used for the previous tests.

Observations were again interrupted by lunar occultations. To reduce the size

of the computer files generated in the simulation, the Doppler count interval

was changed from sixty seconds to one hundred and twenty seconds.

These tests were run to determine whether earth observations are

sufficient to estimate the lunar gravitational field despite the mascons'

location. Mascons cause radial disturbing accelerations as satellites pass over

them and Doppler observations sense relative velocity along the line-of-sight.

Doppler observations should therefore have an easier time sensing mascon

disturbances when the observing site, observed body, and mascon are all

aligned. These two lunar mascon scenarios present two geometrical extremes
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for Doppler sensing. In the first case, the disturbing acceleration due to

passage over a mascon on the limb is orthogonal to the Doppler line-of-sight.

In the second case, the disturbing acceleration and Doppler line-of-sight are

aligned as the orbiting satellite passes over the near face's mascon.

These test cases were initially run using the saved partials feature of

PEP mentioned in Section 6.2. For the first scenario full partials were

recalculated on the fifth iteration and the parameters converged on the ninth

iteration. The parameters from this solution were then run with full partials

and they required six more iterations to converge. For the second scenario,

the first five iterations were run using the saved partials feature since the

"semi-convergence" of the previous case had not been discovered. After the

fifth iteration, the saved partials feature was abandoned and this scenario also

required fifteen total iterations to converge.

The mascon test cases, requiring fifteen iterations to converge,

demonstrated the difficulty of estimating gravitational parameters when the

"truth" and fit models differed. Additionally, these scenarios revealed the

limitations of PEP's saved partials feature. Since it was not clear that saved

partials were helping the estimation process, the method was abandoned.

This significantly increased the amount of computer time and the size of the

memory files required for the simulation process.

6.3.1 Scenario One: Limb Mascons

As mentioned previously, this scenario converged in fifteen iterations

to a degree and order eight spherical harmonic model. Appendix E's Table E-1

lists the estimated harmonic coefficients for this fit model. Additionally this

run estimated the satellite osculating orbital initial conditions. Table 6.3.1-1

compares the true initial conditions with their estimated values.

The fit residuals (observation residuals divided by assumed

measurement noise) for this model have an rms of 7.36725. For the first time

this non-dimensional statistic, which measures how well the estimated

model agrees with the observed behavior, is greater than one. This shows

that this spherical harmonic model is inefficient at modeling a gravitational

field with mascon anomalies. An analysis of the parameter correlations
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reveals that four pairs of correlations have cross correlations greater than

-0.999: $66S86, C66C86, C55C75, and $55S75. The C54C74 and $54S74

correlations also had an extremely high correlation of -0.989. Twenty-two of

the 3,403 correlations were greater in magnitude than 0.90 with nine of these

greater than 0.95. These correlations for the same 200 km lunar polar orbiter

provided an indication that the high parameter correlations discovered in

Section 6.2 were not due to the resonance of a particular harmonic frequency.

Table 6.3.1-1: Limb Mascon Orbital Initial Condition Estimates

"True" Fit A

a0 1938.0 km 1938.1106 km 110.6 meters

e0 0.05 0.050091 0.000091

i0 103.1048 ° 103.1067 ° 0.0019 °

D.o 304-1997° 304.1939° -0.0058°

(f2+CO)o 16.4391° 16-6468° 0-2077°

(f2+_M)o 17.4391° 17.6389° 0-1998°

6.3.2 Scenario Two: Face Mascons

This scenario fit the observed behavior to an 8 x 8 spherical harmonic

expansion in fifteen iterations. Table E-2 in Appendix E lists the estimated

harmonic coefficients for this fit model. This run also estimated the satellite

orbital initial conditions for the observed lunar satellite. .Table 6.3.2-1

compares the true initial conditions with the estimated initial conditions.

This case's non-dimensional fit residuals had a root mean square of

11.8025, once again an order of magnitude greater than desired for an

estimated model. The increase in the residuals' rms over the previous

scenario is most likely due to the lack of observations for the far-side mascon.

The Doppler observations in this scenario sense the radial accelerations due

to the mascon on the near face but cannot account for the lunar far-side

perturbations with the 8 x 8 spherical harmonic expansion. In the previous

case, since the mascon disturbing accelerations were orthogonal to the
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Doppler line-of-sight, the observations did not sense large disturbances and

had an easier time fitting the small disturbances to the fit model.

An analysis of the parameter correlations once again reveals that four

pairs of correlations are greater than -0.998: $66S86, C66C86 , C55C75 , and

$55 s75. The C54 C74 and $54 $74 correlations are again very highly correlated

at -0.989 and -0.988 respectively. Of the 3,403 correlations, nineteen were

greater in magnitude than 0.90 and nine of these were greater than 0.95.

Table 6.3.2-1: Face Mascon Orbital Initial Condition Estimates

"True" Fit A

a0 1938.0 km 1937.9781 km -21.9 meters

e0 0.05 0.049956 -0.000044

i0 103.1047 ° 103.1015 ° -0.0032 °

304.1997 °

16.4391 °

304.2022 ° 0.0025 °

(fl+_)0 16"3311° "0"1080°

(_+c0+M)0 17.4391° 17-3624° °0.07670

6.4 Truth Model Development

Since the true lunar gravitational field is not precisely known, a lunar

gravitational "truth" model was developed for this thesis. This truth model

was then used to evaluate various proposed lunar gravitational sensing

schemes. Previous lunar missions have discovered mascons on the near side

of the moon [35]. There is no conclusive evidence regarding mascons on the

far side of the moon, since there are no observations of a satellite's motion

over the far side. For this thesis' truth model, mascons were placed on both

the near and far sides. These mascons augmented the previously used 5 x 5

spherical harmonic expansion (Table 6.2-2).

From their surface layer representation of the lunar gravitational field,

Wong et. al. identified major lunar mass anomalies with their selenographic
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features [47 Table 2]. Wong's group modeled the lunar gravitational field

with 50 km radii surface disks distributed around the lunar surface (Section

2.3.2). Each surface feature was therefore represented by several disks

depending upon the size of the feature. The seven most influential mass

anomalies, requiring forty-nine surface disks, were selected for the truth

model's near-side mascons. Since PEP-D does not model mascons as surface

disks, these forty-nine disks were converted to point masses placed 58 km

below the lunar surface. The selenographic positions and strengths of the 600

surface disks [47 Figure 4 and Table 6] were then correlated with topographic

and gravitational maps depicting the major surface features [26] to determine

the forty-nine point masses required for the "truth" model.

Since all of the previously identified mascons are on the near side,

there was no scientific basis for establishing lunar far-side mascons. For this

thesis, far-side mascons were developed to meet two requirements. First, they

should be difficult to detect from earth-based observations, and secondly they

should not alter the lunar center of mass. Since a mascon placed on the back

face of the moon would be the most difficult to sense, the first far-side mascon

was centered at 180 ° longitude and 0 ° latitude. Masses comparable to the

near-side mass anomalies were selected for these point masses. Since lines of

longitude are more widely spaced at the equator and nineteen point masses

were used, this mascon is the largest and strongest of any mass anomaly in

the truth model.

The translation of the lunar center of mass determined the placement

of the second far-side mascon. This balancing mascon was composed of seven

point masses centered on 214.5 ° longitude and -48.0 ° latitude. After these two

far-side mascons were added to the near-side mascons, the center of mass was

still askew, so an additional point mass added to the model. The entire

gravitational truth model is contained in Appendix D.

The lunar polar 200 km altitude orbit used in the two previous test

cases was then numerically integrated for twenty-eight days with this lunar

gravitational truth model. The satellite orbit was then converted to

selenographic orbital elements and plotted to determine whether the

mascons had drastically altered the lunar gravitational field. The plots

revealed that the mascons affected the satellite when it was in the prime
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meridian plane, seven and twenty-one days into the orbit propagation. At this

point, the instantaneous semi-major axis increases noticeably. The lunar

altitude, however, never drops below 100 krn over the integration period.

The lunar altitude for this orbiter oscillates between 100 - 300 km. When

numerically integrated without mascons, the satellite orbit exhibits the same

altitude oscillations, but the semi-major axis does not show the peaks

observed in the mascon case. The inclusion of mascons does not affect the

orbital inclination and has a limited effect on the variation of eccentricity

over the twenty-eight day period. This analysis showed that the addition of

mascons to the lunar gravitational field did not detrimentally affect the

satellite orbit.

Table 6.4-1: "Truth" Model Major Mass Anomalies

Mascon Strength Longitude Latitude
x 10 -6

Lunar Mass

Sea of Rains 22.8 328 ° -350 ° 28 ° - 48 °

Sea of Serenity 21.5 8 ° - 25 ° 17 ° - 34 °

Sea of Crises 9.2 52 ° - 63 ° 12 o - 23 °

Sea of Nectar 8.4 27 ° - 38 ° -17 °- -19 °

Seething Bay 4.2 347 ° -353 ° 7 ° - 13 °

Sea of Moisture 6.0 318 ° - 325 ° -29 ° - -22 °

Smyth's Sea 3.1 82 ° - 93 ° -8 ° - 3 °

Subtotal 75.2

Difficult to Obs 40.025 175 ° -185 ° -8 ° - 8 °

Balancing 27.157 212 ° -217 ° -51°--45 °

Point Mass 1.114 217.6 ° -63.4

#of

Point

Masses

11

12

7

6

4

3

6

49

19

7

1

Subtotal 68.296 27
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6.5 Single Orbiter, Earth-Based Doppler Sensing Scheme

The first sensing scheme evaluated with the lunar gravitational truth

model was the earth-based Doppler observation of a single lunar orbiter. This

scheme was selected because it was used to obtain the current lunar gravity

field models. This scheme's ability or inability to estimate the "true" lunar

gravitational field may provide an idea of how well current models represent

the real lunar gravity field. The lunar orbiter was placed in a polar near-

circular orbit which would provide total lunar surface coverage over the

fourteen day observation period. This orbit attempted to recreate the "gravity

sensing" sateUite's orbit in the Lunar Observer or Scout missions [16, 25, 39].

Since the acceleration due to gravity is larger for low altitude orbits, its

disturbances are easier to sense and the lowest possible orbital altitude was

desired for this mission. Unfortunately this desire conflicts with the desire to

observe undisturbed motion for at least one lunar period. Very low altitude

orbits typically require re-boosting to keep them at a safe distance above the

lunar surface. Re-boost maneuvers, however, disrupt the estimation

procedure by introducing new forces on the orbiting body which are difficult

to include in the estimation process. A 100 km altitude polar orbiter was

numerically integrated for twenty-eight days. Plots of its selenographic orbital

elements revealed that this orbiter barely remained above the lunar surface

for the twenty-eight day period. Since this orbiter would require re-boosting

during the twenty-eight days, the orbital altitude was increased by 100 km.

The 200 km altitude polar orbiter maintained an altitude of 100-300 km over

the twenty-eight day period. This satellite orbit was a compromise satisfying

both the low-altitude and no re-boost requirements.

6.5.1 Single Orbiter "Truth" Model Observations

The single polar 200 km altitude lunar orbiter motion was numerically

integrated for fourteen days from 16 May 1968 (JD 2,440,001.5) with the

satellite initial conditions given below. The orbit was propagated using the

Adams-Moulton numerical integration technique with a step size of 2 -13 day.

The integration step size was relaxed from previous cases to save computer

disk space, especially when partial derivatives are calculated at each step.
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Relaxing the integration step size still provided over 725 steps per 2.125504

hour orbit, more than required for numerical stability and adequate for the

characterization of an eighth degree and order harmonic fit model.

Over this fourteen day period, Doppler observations of the lunar

orbiter were processed every sixty seconds, except during lunar occultations,

from the DSN Goldstone station using the S-Band frequency (2.115 GHz).

Transponder frequency translation was not simulated and no horizon

constraints were imposed. A 14 mHz accuracy was assumed for the Doppler

observations, roughly equivalent to the quoted 1 mm/sec range rate accuracy

for sixty second intervals [29]. The simulations of this mission produced

15,695 Doppler shift observations over the fourteen day period.

Table 6.5.1-1: Satellite Initial Conditions for "Truth" Model Observations

a0

e0

i0

Mo

1938 km (1.295472995 x 10 -5 AU)

0.05

90 ° (103.1048493849350 ° )

90 ° (304.1996805394721 ° )

90 ° (72.2394269798987 ° )

i o

6.5.2 Eighth Degree and Order Fit

The first estimation run attempted to fit the observations to an 8 x 8

spherical harmonic expansion. The final iteration of the limb mascon test

case provided the initial guess of parameters and initial conditions for this

case's iterations. This saved computer time since both cases were based on

observations of the same polar orbiter and the limb mascon case had already

integrated the satellite's motion with partial derivatives.

Due to the significant difference between the model used to generate

the "true" observations and the fit model, this case required twenty-five

iterations to converge upon a solution. The estimated harmonic coefficients

for the fit model are listed in Table E-3 in Appendix E. The simulation also

estimated the satellite orbit's initial conditions and Table 6.5.2-1 compares the

true initial conditions with their estimated values.
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The observation residuals divided by the assumed measurement

errors, referred to as the non-dimensional "fit residuals", had a root mean

square value of 365.954 for this model. This is over thirty times larger than

the Face Mascon test case and is a further indication of the 8 x 8 spherical

harmonic expansion's inability to fit the observed satellite's motion. Eighteen

of the 3,403 parameter correlations were greater in magnitude than 0.90 and

nine of these were greater than 0.95. Four pairs of correlations (C55C75,

$66S86, C66C86, and $55S75) were greater than -0.998 and two pairs ($54S74 and

C 54 C 74) were greater than -0.988.

Table 6.5.2-1:8 X 8 Single Orbiter Initial Condition Estimates

"True" Fit A

a0 1938.0 km 1938.1154 km 115.4 meters

e0 0.05 0.047811 -0.002189

i0 103.1048 ° 103.0998 ° -0.0050 °

f_0 304"1997° 304"1957° 0"0040°

(_2+co)0 16-4391° 15.9600° -0.4791°

(f2_o+M)0 17.4391° 17.3912° -0.0479°

6.5.3 Twelfth Degree and Order Fit

The estimated gravity model's fit residuals show that the 8 x 8 spherical

harmonic expansion was not a close fit to the observed behavior. Mascons in

the truth model result in very high frequency gravitational behavior in the

local area (Section 2.3). Since the spherical harmonic expansion requires

higher degree and order expansions to model this high frequency behavior, a

fit to a 12 x 12 spherical harmonic model was attempted.

For the initial parameter guesses, estimates from the 8 x 8 fit model

were used and all of the new coefficients (ninth through twelfth degrees)

were set to zero. The satellite initial condition estimates for the 8 x 8 fit, used

for the 12 x 12 fit's initial iteration, are listed in Table 6.5.3-1. The same

"truth" model observations used in the 8 x 8 fit were used for this fit.
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Since the fit model was increased to twelfth degree and order, the

numerical integration step size was reduced to 2 -14 days. The step size was

changed to sample the higher degree harmonic effects more often with 1,451

steps per 2.125504 hour orbit. With the change in step size and dramatically

increased number of estimation parameters and parameter partials, the

numerical integration required approximately 23 hours to propagate the

satellite's motion and partial derivatives for fourteen days.

Table 6.5.3-1:12 X 12 Fit Initial Guesses for Satellite Initial Conditions

a0 1.29555011876471 x 10 -5 AU

e0 0.0478107828679364

i0 103.099831198443 °

_-o 304.195650955435 °

(f2+ _)0 15.9599887633931 °

(fl+ _ +M)0 17.3911644150588 °

On the fitting process' second iteration several of the parameter

adjustments were an order of magnitude larger than their previous estimate.

These estimates were used to propagate the next iteration's orbit, resulting in

increased residuals and even larger parameter adjustments. By the fifth

iteration, the normal equations could not be solved because 152 of the 171

diagonal elements in the coefficient matrix (A) were negative. Since the

normal equations could not be inverted, the fitting process was abandoned.

Table 6.5.3-2:12 X 12 Spherical Harmonic Fit Progression

Pre-adjustment Predic_dRMS

Iteration RMS Residual Residual

1 365.954 112.113

2 10,433.0 99.5596

3 42,590.9 192.212

4 106,490 1,999.54

5 760_14,000 16A84,700

Table 6.5.3-2 shows how the parameter adjustments kept leading the

process further and further from a solution. The fitting process started with

observation residuals divided by the assumed measurement errors with a

root mean square value of 366. After solving the normal equations, PEP
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predicted a non-dimensional rms residual of 112. The predicted residual is

the computed pre-adjustment residual less the sum of the observable partial

derivatives times the parameter adjustments. Instead of reducing the

residuals by a third, the new parameter estimates produced residuals with a

non-dimensional rms almost thirty times greater than in the previous

iteration! Unfortunately instead of making it easier to fit to the observed

lunar orbiter motion, increasing the degree and order of the spherical

harmonic model made it more difficult to solve the normal equations and

converge upon a fit solution. This may have occurred because of the limited

observability of lunar far-side motion and high parameter correlations.

6.6 Tenth Degree Harmonic Truth and Fit Model Test Case

After the previous convergence difficulties, a test was run to estimate a

10 x 10 spherical harmonic expansion for observations generated with the

same degree and order truth model. Since the previous case was the first

attempt to fit to harmonic expansions higher than eighth degree and order,

this test would verify whether or not the difficulties encountered were due to

the estimation program or the spherical harmonic expansion's ability to fit to

the observed behavior.

The same lunar polar 200 km altitude near-circular orbit used in

previous runs was used to generate Doppler "truth" observations with 1

mm/sec accuracy. This orbit, again integrated for fourteen days from 16 May

1968, used the orbital initial conditions listed in Table 6.2-1 and a 10 x 10

spherical harmonic lunar gravity truth model. This truth model used the

1980 Bills and Ferrari coefficients [12] for the initial five degrees (Table 6-2.2).

Gravitational coefficients developed at JPL by Alex Konopliv for his 50 x 50

spherical harmonic expansion were used for the sixth through tenth degree

harmonic coefficients [27], because the Bills and Ferrari coefficients [12] were

not manually entered into the PEP input stream. The coefficients used are

listed in Table E-4 in Appendix E.

After generating the "truth" model observations, the satellite initial

conditions and one hundred and seventeen lunar harmonic coefficients were
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perturbed to provide the first guess for the estimation process. As in the

previous fit to a pure harmonic truth test case, each gravitational harmonic

coefficient's absolute value was increased by 1.0 x 10 -7 and the orbital initial

conditions were perturbed by the values given in Table 6.2-3. The satellite

orbit was then numerically integrated with partial derivatives.

In the first iteration the pre-adjustment observations residuals divided

by the assumed measurement error had a root mean square value of 715,121!

As a result, the calculated parameter adjustments were orders of magnitude

larger than the guessed parameters. After the first iteration, the lunar orbiter

eccentricity grew from 0.05001 to 0.24325 and the semi-major axis was

increased by 532 krn. These initial conditions were then propagated to create

the next iteration's observations. In the second iteration, the normal

equations could not be solved because 51 of the 123 diagonal elements in the

coefficient matrix (A) were negative. Once again since the normal equations

could not be inverted, the estimation process was abandoned. Rather than

converging upon a solution, Table 6.6-1 demonstrates how quickly the process

diverged.

Table 6.6-1:10 X 10 Spherical Harmonic Fit Progression

Pre-adjustment Predicted RMS

Iteration RMS Residual Residual

1 715,121 248,467

2 3.20623 x 1010 2.11726 x 107

Since the previous test case (Section 6.2) encountered difficulty when

an incomplete set of harmonic coefficients were used to generate partial

derivatives of the satellite motion, this cases' observation partial derivatives

were checked using a finite difference method (Section 3.4.4). This check

verified that the observation partials were correct.

Since the estimation software was operating properly, the gravitational

model's sensitivity to initial guesses seemed to cause the convergence

difficulties. Apparently the initial guesses resulted in theoretical observation

values so different from the observed behavior that correct parameter

adjustments could not be determined. Since the estimation of higher degree

and order expansion fit models is extremely sensitive to the initial parameter
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guesses, fit models above eighth degree and order were not attempted for the

remainder of this thesis' simulations.

Smaller parameter adjustments from iteration to iteration could help

the process converge. Incorporating a priori estimates of the lunar

gravitational field and their uncertainties would reduce the size of the

parameter adjustments (see Section 5.1.4). Smaller parameter adjustments

could also be used by under-weighting the calculated adjustments, i.e. only

adjusting the initial guesses by 2/3 of the calculated adjustment on the first

iteration, etc. Convergence could also be aided by first estimating an 8 x 8,

then a 9 x 9, and then a 10 x 10 degree and order fit model to the observed

behavior, using the estimates from one model as initial guesses for the next

higher degree model.

6.7 Dual Orbiter, Bent Pipe Doppler Sensing Scheme

The next sensing scheme evaluated with the lunar gravitational

"truth" model featured two lunar satellites and the simulation of a bent pipe

Doppler sensing scheme between earth-based sites and the two satellites. This

sensing scheme was selected since it is one of the schemes being considered by

NASA for future lunar gravitational sensing missions.

This sensing scheme uses a low altitude circular polar "gravity

sensing" satellite. A coplanar elliptical "viewing" satellite makes lunar far-

side observations of the "gravity sensing" satellite's motion [16, 39, 40]. The

polar 200 km altitude near-circular lunar orbiter used in previous

simulations is once again the "gravity sensing" satellite for this dual orbiter

sensing scheme. The satellite initial conditions and numerical integration

parameters for this simulation were the same as for the single orbiter, earth-

based Doppler observation sensing scheme and are given in Section 6.5. The

"viewing" satellite was placed in a 450 km x 7,000 km altitude elliptical orbit

with a 10.06 hour period. This satellite was given the same initial inclination

(i) and longitude of the ascending node (f_) as the circular satellite, placing

them in the same orbital plane, orbiting the moon in the same direction.

With this selection of ascending node, the far side of the moon rotates
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underneath the elliptical orbit's apolune during the first fourteen days of orbit

propagation. This maximizes the satellite's ability to view the low altitude

orbiter's far-side motion.

The argument of perilune was selected to skew the ellipse and bring

the orbit's apolune position out of the earth occultation zone (Figure 1.4-1).

Keeping the satellite's apolune passage out of the occultation zone increases

the time earth-based sites can view the elliptical satellite for bent-pipe

measurements as well as data transfers. The long term behavior of the

osculating orbital elements was studied to determine this skew direction.

Formulas for the doubly averaged effect of the earth upon a lunar orbit

revealed that if the initial argument of perilune, co, is in the second or fourth

quadrants, the polar orbit's eccentricity will decrease and co will drift to the

first or third quadrant [9]. Based upon this analysis and the desire to keep the

apolune over the backside of the moon, a perilune angle in the fourth

quadrant was selected. The initial selenographic orbital elements for this

elliptical satellite are given in Table 6.7-1, with the angle values in

parentheses referred to the mean equinox and equator of the earth of 1950.0.

These initial conditions were numerically integrated for fourteen days from

16 May 1968 (JD 2,440,001.5) using the Nordsieck variable step size integration

technique (Section 3.1). Since the elliptical orbit was newly propagated, its

numerical integration file was converted to selenographic orbital elements.

Plots of these elements revealed that the orbit was stable and, as predicted,

the orbital eccentricity did decrease over the fourteen day period.

Table 6.7-1: Elliptical Satellite Initial Conditions for "Truth" Model Observations

a0 5463 kin (3.651789462 x 10 -5 AU)

e0 0.05994874611

i0 90 ° (103.1048493849350 °)

fro 90 ° (304.1996805394721 °)

coo 315 ° (297.2394269798987 °)

Mo 1 °
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6.7.1 Dual Orbiter "Truth" Model Observations

The coherent bent pipe observation method (Section 4.2.3) was

simulated over the fourteen days the satellites' orbits were propagated. One

two-way coherent Doppler loop processed observations between the DSN

Goldstone site and the elliptical satellite. Simultaneously, the elliptical

satellite generated two-way coherent Doppler observations of the low-altitude

orbiter. Although the coherent bent pipe scheme would be interrupted if any

of the links were occulted, only the individual links in this simulation were

interrupted by lunar occultations. In addition to the bent pipe observation

simulation, the DSN Goldstone site generated Doppler observations of the

near-circular polar satellite during its near-side passes. All of these

observations were simulated using the 2.115 GHz S-band frequency with

approximately I mm/sec range rate accuracy (14 mHz) [29].

Simulating this sensing scheme produced 15,695 earth-based Doppler

observations of the circular satellite. Because the elliptical orbit was skewed,

19,699 Doppler observations were generated between it and the DSN station.

Over this same period, 10,680 Doppler observations were simulated between

the two satellites. Auxiliary software analyzed these observation series and

their occultation periods to evaluate the far-side lunar coverage. Over the

fourteen days, the low altitude polar orbiter passed behind the moon 114

times. For most of these occultations, the elliptical satellite viewed this far-

side passage. The moon blocked the line-of-sight between the two satellites

on 49 of these 114 occasions and this blockage usually only affected a portion

of the passage. There were only 15 cases in which the line-of-sight to the

elliptical satellite was blocked for the entire far-side passage. Since these gaps

in observation coverage did not occur for sequential far-side passes, the 46,074

observations should provide excellent visibility into the circular orbiter's

motion on the lunar far side.

6.7.2 Eighth Degree and Order Fit

These observations, generated with the lunar gravitational "truth"

model, were then fit to an 8 x 8 spherical harmonic expansion representing

the moon's gravitational field. The initial conditions for the two satellites
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were perturbed from their true values for the initial guess in the fitting

process. Table 6.2-3 lists the perturbations which were applied to both the

circular and elliptical orbits' initial conditions. The true values of the 5 × 5

spherical harmonic expansion used in the truth model were used as initial

guesses for the first five degrees of gravitational coefficients (Table 6.2-2).

Gravitational coefficients from Alex Konopliv's 50 X 50 spherical harmonic

model of the moon [27] were used for the sixth, seventh, and eighth degree

coefficient initial guesses. Table E-4 in Appendix E lists these coefficients.

The iteration fit did not converge upon a solution in its normal sense.

With the increased observability of lunar far-side motion, the parameter

estimation routine drove the non-dimensional residuals down to a root

mean square of 386.462 from an initial 23,763.6 in the first four iterations.

Because of the difference between the "truth" and fit models, the estimation

routine could not reduce the non-dimensional residual rms below 360 as

shown in Table 6.7.2-1. Once again, the predicted residual is the computed

pre-adjustment residual minus the sum of the observable partial derivatives

times the parameter adjustments.

Table 6.7.2-1:8 x 8 Spherical Harmonic Fit Progression,

Pre-adjustment Predicted RMS

Iteration RMS Residual Residual

1 23,763.6 817.104

2 2,983.65 437.085

3 1,746.75 383.599

4 386.462 371.811

5 375.229 366.587

6 368.213 363.927

15 361.210 361.015

38 361.099 360.939

Although the estimation routine had minimized the fit residuals, its

convergence criteria is based on the ratio of the parameter adjustments to

their uncertainties with the assumed measurement errors, and these values

remained above the convergence limit of 0.01. Since the convergence
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criterion did not signal convergence, the estimation iterations continued ad

infinitum, slowly reducing the residual rms by hundredths and thousandths.

The process was stopped after thirty-eight iterations.

The estimated harmonic coefficients for the fit model are listed in

Table E-5 in Appendix E. The simulation also estimated the orbital initial

conditions for both of the satellites in the sensing scheme. Tables 6.7.2-2 and

6.7.2-3 compare the true initial conditions with their estimated values.

The estimated model's fit residuals had a root mean square value of

361.099 as listed in Table 6.7.2-1. This is smaller than the root mean square of

the residuals achieved with the fit to a single lunar polar orbiter (365.954).

The high fit residuals are an indication of the 8 x 8 spherical harmonic

expansion's inability to fit the observed motion due to the "true"

gravitational field. This dual satellite observation method has significantly

reduced some of the high parameter correlations, although the most

significant ones still remain. For this fit case fifteen of the 3,916 parameter

correlations were greater in magnitude than 0.90 and ten of these were greater

than 0.95. As with the previous 8 x 8 spherical harmonic fit, the four highest

correlations were among the C55C75, S55S75, $66S86, and C66C86 pairs.

Although the correlations between the fifth degree, fifth order and seventh

degree, fifth order terms were still greater than -0.998, the other correlations

were now reduced to-0.995. The S54S74 and C54C74 pairs were again the next

highest correlated (-0.988).

Table 6.7.2-2: Circular Orbiter Initial Condition Estimates

"True" Fit A

a0 1938.0 km 1937.9401 km -59.9 meters

eo 0.05 0.049677 -0.000323

103.1048 °

D.o 304"1997°

(_+CO)o 16"4391°

(fl+co+M)o 17-4391°

103.1033 ° -0.0015 °

304.1994 ° -0.0003 °

16.2649 ° -0.1742 °

17.4469 ° 0.0078 °
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Table 6.7.2-3: Elliptical Orbiter Initial Condition Estimates

ao

eo

io

coo

Mo

"True" Fit A

5463.0km 5463.6291km 629.1m

0.599487 0.599573 0.000086

103.1048 ° 103.1068 ° 0.0020 °

304.1997 ° 304.1992 ° 0.0005 °

297.2394 ° 297.2542 ° 0.0148 °

1.0 ° 0.9997 ° -0.0003 °
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Chapter Seven

Lunar Gravity Field
Estimation Analyses

7.1 Analysis Techniques

After converging upon a least squares maximum likelihood estimate

of gravitational coefficients, the estimated lunar gravity fields were analyzed

to compare their ability to estimate the "true" gravity field. Since spaceborne

navigation depends on accurately modeling the forces acting on a spacecraft,

these analyses focus on the effects of modeling errors on lunar navigation.

The root mean square of the observation residuals does not provide an

adequate analysis of the global lunar gravity errors due to mismodeling, since

it only considers the areas of the gravity field where observations were made.

This underweights the far side of the moon where fewer measurements are

taken. In Section 7.2 the global radial accelerations for the estimated fit lunar

gravity fields are compared to the "true" lunar radial accelerations. The limb

mascon and face mascon estimated fit models are analyzed and the two 8 × 8

spherical harmonic expansion fit models are compared to the lunar

gravitational "truth" model developed in Section 6.4.

Next, two different lunar spacecraft mission phases are simulated to

evaluate the two estimated fits to the lunar gravitational "truth" model.

These analyses show how state errors grow using the estimated gravity field

model and are intended to simulate the real-world consequences of planning

and executing lunar missions with a mismodeled gravity field.

In Section 7.3 the state uncertainties for a low inclination, low altitude

spacecraft orbit are predicted one orbit ahead using the covariance analysis
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described in Section 5.2. Stations tracking a lunar satellite would use this

analytical method during far-side passage to predict the spacecraft's state

uncertainties upon reemergence from the backside. Since this state

uncertainty prediction is based upon a mismodeled lunar gravity field, the

predicted uncertainties will not be exact. The "true" state is calculated by

numerically integrating the spacecraft orbit using the lunar gravity "truth"

model. The difference between the spacecraft's predicted and "true" states is

the error. Comparing the "true" state with the predicted states reveals the

accuracy of the estimated lunar gravity field.

A lunar landing deorbit maneuver is simulated in Section 7.4. In this

analysis the deorbit trajectory from a low inclination circular parking orbit

was determined from the estimated lunar gravity field models. The mission

was then propagated using the "true" lunar gravity field. Lunar gravity

mismodeling resulted in a spacecraft position error by the time the spacecraft

reached the lunar altitude for Powered Descent Initiation (PDI), typically

about 18 kilometers. In a real lunar mission, the spacecraft would be forced to

burn extra propellant in a suboptimal descent trajectory to recover from these

errors.

Finally, the high gravitational coefficient correlations encountered in

the estimation process are analyzed in Section 7.5. Three different

measurement types and orbital orientations are simulated to determine their

effect on the correlations. Reducing the coefficient correlations by

introducing new observations may permit the process to converge more

quickly and estimate a more accurate gravitational model. Additionally, the

highest correlations are studied in an attempt to find ways to allow them to be

estimated independently.

7.2 Global Lunar Radial Acceleration Analysis

Although the estimation process provides residual statistics, they only

provide an idea of how well the estimate fits the observations since the

observations are not available over the entire lunar surface. To analyze the

fit globally a software program was written to calculate the radial accelerations
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for a gravity field model everywhere on a sphere of constant radius. Only the

radial accelerations due to gravity harmonics and/or mascons are calculated

in this program. These radial accelerations were calculated for fit and truth

models for all of the cases estimated in Chapter Six at a lunar altitude of 100

km for grid points spaced every four degrees of selenographic latitude and

longitude. Unfortunately, since the commercial graphics package was

erroneously plotting lines of constant radial acceleration, contour plots

comparing the fit and "truth" models are not currently available.

Based on the calculated radial accelerations, the fit and "truth" models

were compared statistically. The radial acceleration errors between the

"truth" and fit models were calculated for each grid point. The root mean

square error between the two models was then calculated. Because of the

even spacing of grid points in selenographic latitude and longitude (chosen

for rectangular contour plots), this analysis weights radial acceleration errors

more heavily in the polar regions. For the mascon test case this bias does not

favor either scenario since the disturbing mascons were placed on the

equator. For the two 8 x 8 estimated fit models, the dual orbiter bent pipe

estimated fit might have an advantage since the "viewing" satellite observed

the "sensing" satellite as it passed over the lunar polar regions. Both models,

however, were trying to estimate the same lunar gravity "truth" model, so a

comparison of the rss radial acceleration errors is still valid.

7.2.1 Limb / Face Mascon Analysis

Based on the global lunar radial acceleration errors, the face mascon

case produced a slightly better estimated gravity field. This case had an rms

radial acceleration error at 100 km altitude of 64.7804 milligals. The estimated

fit to the limb mascon case had radial acceleration errors with an rms of

66.6636 milligals. This global analysis of the radial accelerations errors reveals

that a slightly better lunar gravity field was estimated when the disturbing

mascons were aligned with the sensing line-of-sight.

This test case attempted to determine whether the mascon's location

and the sensing geometry affected the estimated gravity field. The non-

dimensional fit residuals' rms contradicted the global radial acceleration
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analysis. The limb mascon fit model (7.37) resulted in a better fit than the face

mascon fit model (11.80). These statistics could be the result of the near-side

face mascon causing larger line-of-sight accelerations for the orbiting satellite

than the limb mascons produced. These statistics could also result from the

measurement's ability to sense the near-side mascon's disturbance or inability

to recognize any disturbance from the limb mascons. Unfortunately, this

analysis does not indicate which estimated field is better at modeling the

radial accelerations in the local vicinity of the mascons. Contour plots of

these radial accelerations will demonstrate the fit models' ability to locally

model these mascon disturbances.

7.2.2 Analysis of the Eighth Degree and Order Fits

Based on the global lunar radial accelerations errors, the dual orbiter

bent pipe sensing scheme produced the best estimated gravity field. This case

had an rms radial acceleration error at 100 km altitude of 263.015 milligals.

The estimated fit to the single orbiter, earth-based sensing scheme had radial

acceleration errors with an rms of 320.073 milligals. The disparity between

the two rms values provides a strong indication of the advantage of including

lunar far-side observations in the estimation process. These errors also give

an indication of how much more difficult it was to estimate a spherical

harmonic expansion in the presence of 79 point mass disturbances than it was

in the mascon test case with just two point masses.

7.3 Single Orbit State Uncertainty Prediction Analysis

For the next analysis, a low inclination, low altitude lunar satellite

orbit was used to analyze the position and velocity errors between the "true"

and estimated gravity fields. The lunar gravity field truth model developed

in Section 6.4 and the two 8 x 8 spherical harmonic expansion fit models

derived from the two different sensing schemes were used for this analysis.

A 15 ° inclination, 100 km lunar altitude satellite orbit was selected for this

analysis. The estimated 8 X 8 spherical harmonic fit models and their
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coefficient uncertainties were first used to predict the state uncertainties for

this orbit. This covariance analysis was performed with both the gravity

harmonic coefficient covariance matrix (A -1) and this matrix multiplied by

the fit residuals' rms (1_). Fit residuals, once again, are the observation

residuals divided by the assumed measurement errors. This evaluation orbit

was then numerically integrated using the "true" lunar gravity field. The

state errors between the "true" orbits and those predicted from the two 8 x 8

estimated spherical harmonic models provided a further measure of the two

sensing schemes' capabilities and limitations. Furthermore, the predicted

uncertainties were compared to the errors to understand the uncertainty

prediction accuracy with gravity field modeling errors.

The equations of motion and equations of the partial derivatives of

motion with respect to the gravity harmonic coefficients were numerically

integrated for one orbit (117.85 minutes) for the two estimated fit models

from 16 May 1968 (JD 2,440,001.5 Oh CT) with the satellite selenographic initial

osculating orbital elements listed in Table 7.3-1 (1950.0 angles in parentheses).

Based on these initial conditions, the lunar orbiter has emerged from behind

the far side of the moon and is in the middle of a near-side pass. In the

numerical integration of the "truth" model, partial derivatives were not

calculated. Auxiliary software programs then used the numerical integration

output files for the three cases as well as the covariance files for the two

estimated fit models to perform the error analysis.

Table 7.3-1: Low Inclination, Low Altitude Evaluation Orbit
Satellite Initial Conditions

ao

eo

i0

coo

Mo

1838 km (1.22862712 x 10 -5 AU)

0.01

15 ° (30.7285027175189 °)

210 ° (26.9029402084826 °)

180 ° (222.6750569007985 °)

315 °
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7.3.1 State Uncertainty Prediction

The state uncertainty prediction based on PEP's gravity harmonic

coefficient covariance matrix (A -1) derived from the assumed measurement

errors was overly optimistic for both cases since the fit residuals for the two

estimated runs were so high (365.954 and 361.099 rms). This method

predicted root sum squared (rss) state uncertainties less than 500 meters in

position and one half of a meter per second in velocity over the orbit for the

single orbiter estimated fit case. For the dual orbiter estimated fit model this

method predicted rss uncertainties of less than 250 meters in position and one

quarter of a meter per second in velocity over the same orbit. These

predictions are extremely optimistic, especially when compared to the orbital

errors presented in Section 7.3.2.

The prediction based on the estimated fit's covariance matrix Z from

Equation (5.2-2) provided a more realistic assessment of the state

uncertainties. This method predicted rss state uncertainties as high as 4

kilometers in position and 4 meters per second in velocity for the single

orbiter estimated fit case. These predicted state uncertainties, transformed to

the local vertical, local horizontal coordinates, are plotted over time for this

lunar orbit in Figure 7.3.1-1. For the dual body estimated fit model, this

analysis predicted rss uncertainties of approximately 750 meters in position

and 0.6 meters per second in velocity. These local vertical, local horizontal

predicted state uncertainties are plotted over time in Figure 7.3.1-2. These

state uncertainty plots show that the largest position uncertainties are in the

range direction and the largest velocity uncertainties are in the vertical

direction as might be expected for the radial acceleration perturbations caused

by the mascons.

This state uncertainty prediction analysis demonstrates the importance

of including lunar far-side observations in the estimation process. The

uncertainties predicted for the gravity model estimated from the dual orbiter

sensing scheme were approximately one fourth of those estimated from the

single orbiter sensing scheme. The dual orbiter cases' uncertainties were also

very low while the lunar satellite passed across the lunar near side (first forty

minutes of numerical integration). For both cases, the uncertainties grow as

the orbiter passes behind the far side of the moon, reaching local maximums

126



Chapter Seven: Estimated Lunar Gravity Field Analyses

for velocity in the vertical direction and position in the down range direction

in the middle of the far-side pass. These uncertainties subside when the

spacecraft reemerges from the far side of the moon eighty-eight minutes into

the orbit. From this point the uncertainties increase during the final lunar

near-side pass.

7.3.2 State Errors Between "True" and Estimated Gravity Models

The errors between the "true" and estimated fit lunar gravity models

were determined from a direct comparison of the two numerical integration

files. These state errors were then transformed to local vertical, local

horizontal coordinates. The local vertical, local horizontal state errors

between the orbits generated for the single orbiter estimated lunar gravity

field and the "true" gravity field are plotted in Figure 7.3.2-1. The same errors

resulting from the difference between the dual orbiter estimated gravity field

and the "true" gravity field are plotted versus time in Figure 7.3.2-2.

The errors for the single orbiter estimated gravity field stay relatively

flat as the orbiter crosses the near side of the moon. Forty minutes into the

numerical integration the orbiter passes behind the moon. Midway through

the far-side pass there is a rapid growth of velocity errors. Shortly thereafter

these velocity errors manifest themselves as position errors as large as 15

kilometers in the range and 10 kilometers in the cross track directions. These

errors demonstrate this estimated fit model's inability to estimate the far-side

gravity field.

The errors for the dual orbiter estimated gravity field are much lower

than in the previous case. When plotted on the same scales as the errors in

the first case, the dual orbiter case's velocity errors stay in a narrow band

around zero meters per second. The dual orbiter position errors are also

much more reasonable for the cross track and vertical directions. The dual

orbiter estimated gravity model still results in large range errors over the

single lunar orbit. Since the dual orbiter estimated lunar gravity model is

based on observations over the entire lunar surface, the position and velocity

errors do not manifest themselves at a specific point in the lunar orbit as was

the previous case. In this case the cross track and vertical position errors and
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Single Orbit Spacecraft State Uncertainty

Predicted State Uncertainty for Single Orbiter Sensing Fit
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Figure 7.3.1-1: Single Orbiter Estimated Gravity Field State Uncertainties
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Single Orbit Spacecraft State Uncertainty

Predicted State Uncertainty for Dual Orbiter Sensing Fit
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Single Orbit Spacecraft State Errors

Errors Between Dual Orbiter Sensing Scheme Fit and Truth Model
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Figure 7.3.2-2: Dual Orbiter Estimated Gravity Field State Errors
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the range and cross track velocity errors oscillate about zero for the single

lunar orbit. The vertical velocity errors and resulting down range position

errors, however, grow without oscillating about zero for the single orbit

propagation.

For both cases the state uncertainty prediction was very optimistic,

even after including the rms of the fit residuals. This discrepancy results

from the difference between the structure of the two lunar gravity models

("truth" and fit). The rss of the predicted position uncertainty was an order of

magnitude less than the "true" position errors. The predicted uncertainty in

velocity was only slightly better. Additionally, the covariance analysis does

not successfully predict cross track position uncertainties. This is especially

apparent for the single orbiter estimated gravity field case. Figure 7.3.2-1

shows significant cross track state errors and no notable cross track

uncertainties are predicted in Figure 7.3.1-1.

When analyzing the proposed Lunar Observer mission with different

truth and fit models, Alex Konopliv also noted that a covariance uncertainty

analysis was unbelievable because it was "overly optimistic for all cases" [25].

This deficiency in the covariance analysis is an indication that the system

dynamic model needs to include some process noise to account for the gravity

field mismodeling. A Kalman filtering or maximum likelihood system

identification technique could include this process noise as it propagated the

satellite equations of motion.

7.4 Lunar Deorbit Maneuver Error Analysis

Finally, a satellite lunar landing from a low inclination circular orbit

was simulated for both estimated gravity fields. The deorbit burn for this

lunar maneuver was determined based on numerical orbit integrations using

the estimated lunar gravity fields. This maneuver was then executed in the

"true" lunar gravity field, and the position errors at PDI were used to evaluate

the two estimated gravity field models' ability to plan future lunar missions.
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This analysis assumed that the spacecraft was resupplying a lunar base

on the near side of the moon and had been inserted into a circular, low

inclination orbit. The transfer from this orbit to the lunar surface was

planned using a Hohmann transfer. The circular parking orbit was

numerically integrated from the near side of the moon to the middle of the

far side of the moon. At this point, a deorbit burn placed the spacecraft in an

elliptical transfer orbit. The spacecraft's pre-planned Powered Descent

Initiation (PDI) location coincided with the elliptical transfer orbits' perilune.

From this point, the spacecraft would begin its powered descent to the lunar

surface and rendezvous with the lunar base. The powered descent portion of

the landing mission was not simulated in this analysis.

200 km Altitude

Deorbit Burn" - - _ Earth

Figure 7.4-1: Lunar Deorbit Mission

The mission simulation began by integrating the spacecraft's circular

orbit starting on 16 May 1968 (JD 2,440,001.5 Oh) with the satellite selenographic

initial conditions listed in Table 7.4-1 (1950.0 angles in parentheses). Based on

the satellite's state at M=180 ° in the parking orbit, an initial guess for the Av

was calculated for a Keplerian transfer orbit with the PDI perilune altitude,

the lunar surface for this analysis. The elliptical transfer orbit was then

numerically integrated and the guessed Av updated based upon the PDI

position error at perilune. These iterations were continued until acceptable

target PDI positions were obtained. Since this maneuver was planned for the

two different estimated lunar gravity fields, two different Av's were calculated

and subsequently executed.
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For the single body estimated gravity field case, the calculated deorbit

burn occurred over 0.0611 ° south latitude and 179.9215 ° west longitude

approximately 63.985 minutes into the numerical integration. The transfer

Av had a magnitude of 2.535 x 10 -5 AU/day (PEP's units) with a projected PDI

at 0.040 ° south latitude and 1.951 ° west longitude. This burn was then

executed by the spacecraft in the "true" lunar gravity field. At 63.985 minutes

into the numerical orbit integration the previously calculated Av was

subtracted from the satellite's inertial velocity to simulate the deorbit burn.

The numerical integration then proceeded from this new state. This

maneuver resulted in a PDI at 0.766 ° south latitude and 9.903 ° west longitude,

a 7.952 ° error in longitude and 0.725 ° error in latitude!

Table 7.4-1: Low Inclination, Lunar Landing Parking Orbit
Satellite Initial Conditions

a0

e0

i0

coo

M0

1938 km (1.295472995 x 10 -5 AU)

0.0005

5 ° (18.2129222440553 ° )

0 ° (349.1664497093493 °)

0 ° (226.5049507382479 °)

0 °

The deorbit was then planned with the dual orbiter estimated lunar

gravity field. The deorbit burn was again scheduled for 63.985 minutes into

the orbit (from the satellite initial conditions in Table 7.4-1) at a selenographic

latitude of -0.0358 ° and longitude of -179.9851 ° . The planned magnitude of

the Av was 2.5225 x 10 -5 AU/day with a projected PDI of 0.43390 south latitude

and 5.8691 ° west longitude. This maneuver was then executed with the

"true" lunar gravity field. This simulation resulted in a PDI at 0.2503 ° south

latitude and 4.008 ° west longitude. The PDI errors in this case were now

1.8613 ° in longitude and 0.1835 ° in latitude, a significant reduction in the PDI

position errors and further evidence of the importance of including lunar far-

side observations in lunar gravity field estimations.

On the lunar surface these errors in latitude and longitude would

result in a position error of 242 kilometers in the single orbiter estimated 8 x 8

field case and 56 kilometers for the dual orbiter estimated 8 x 8 field. If the

landing spacecraft began powered descent this far off target it should still be
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able to land close to the lunar base, as long as it is close enough to receive a

radio beacon signal. The suboptimal descent trajectory required to

compensate for .these errors, especially in the first case, would seriously cut

into any propellant margins, perhaps jeopardizing future mission plans.

The magnitude of the navigation errors might be reduced if higher

than 8 x 8 spherical harmonic or other gravity model fits were estimated. For

higher degree and order fits, it would be interesting to note whether the

above factor of 4.3 improvement in navigation accuracy still held when far-

side satellite-to-satellite measurements were added to near-side earth-based

measurements.

7.5 Gravity Coefficient Parameter Correlation Analysis

Each of the estimation runs in Chapter Six produced extremely high

correlations for some of the gravitational coefficients. These high

correlations inhibited the estimation routine's ability to converge quickly and

provide an accurate estimate of the gravitational parameters. Different

measurement types and orbital orientations were analyzed to see if any of

these parameter correlations could be broken. For this analysis, "truth"

model observations were generated for the new observation methods. Based

on each new set of observations, the lunar gravity field was estimated for a

single iteration of the process outlined in Figure 6.1-1. The gravitational

parameter correlations were then obtained from the single iteration's

covariance matrix.

For the first correlation analysis, the elliptical "viewing" orbit in the

dual orbiter, bent pipe observation scheme was placed in an orthogonal,

rather than coplanar, orbit plane. The "sensing" orbit was left in its polar

orbit to provide full lunar surface coverage over the fourteen day observation

period, so the elliptical satellite was placed in an equatorial orbit. From this

orbital geometry, bent pipe observations identical to the coplanar case were

simulated for the estimation process. From this iteration, sixteen of the 3,926

correlations were greater in magnitude than 0.90. Fourteen of these were

greater than 0.95. The C55C75, $55S75 pairs had the highest correlation of
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-0.999. The C54C74, $54S74 correlation pairs were the second highest at -0.996.

The C66C86 and $66s86 pairs also had correlations greater than -0.993

The second method investigated an interferometric observation

method to determine its impact on the high gravitational parameter

correlations. For this scenario, NASA DSN stations made milli-arc second

long baseline interferometer measurements of the near-circular 200 km

altitude lunar orbiter in addition to the 3 meter range and 1 mm/sec Doppler

observations. Because of difficulties encountered simulating PEP's internal

interferometry observations, these interferometer measurements were

simulated by azimuth and elevation angle observations for a single DSN site

(Goldstone) with the interferometric accuracy. Since the interferometer

observations only provide a planar angular measurement, the fitting process

was executed ignoring the elevation angle observations. The fitting process

was then repeated using both of the angle measurements to see what impact

precise earth-based three-dimensional angular observations combined with

range and Doppler observations would have on the gravitational parameter

coefficients.

For both of these fit cases (azimuth only/azimuth and elevation),

twenty two of the 3,403 correlations were greater in magnitude than 0.90 and

fifteen of these were greater than 0.95. The parameter correlations were

almost identical for the two cases, with the highest parameter correlations

differing only in the fourth or fifth decimal place. The $55 $75 and C55C 75

pairs were the most highly correlated (-0.999). The C6sC85, $65S85, C54C74,

$54S74 parameter correlations were the second highest group. For the

interferometric case the 66, 86 correlations are still very high (> -0.990).

For the final case, the Goddard Space Flight Center's (GSFC) proposed

co-orbital laser ranging and Doppler lunar gravity field sensing scheme was

simulated (Figure 1.4-2). The main satellite was placed in the polar near-

circular 200 km altitude orbit which has proven so useful throughout this

thesis. The co-orbiting subsatellite was placed in the identical orbit but with

an initial mean anomaly nine degrees ahead of the main satellite. Laser

ranging and sixty second Doppler observations were processed for the entire

fourteen day orbit with 1 mm laser ranging and 1 mm/sec Doppler accuracies.

These accuracies were based on GSFC briefed capabilities [2]. Additionally this

136



Chapter Seven: Estimated Lunar Gravity Field Analyses

method used two-way coherent Doppler observations between the DSN

Goldstone site and the main satellite using the S-Band (2.115 GHz) frequency

with 1 mm/sec accuracy for sixty second count intervals.

For this case, the parameter correlations were different from all of the

previous iterations. The highest gravity coefficient correlations were now the

$54S74 and C54C74 pairs (-0.998 and -0.996 respectively) with the two initial

osculating orbital eccentricities also highly correlated (-0.997). The 66, 86 and

55, 75 correlations in this case were smaller in magnitude than 0.850 except for

the $55 $75 correlation which was -0.926.

Each parameter estimation run also determined the spread of the

parameter correlations. For each different measurement type and orbital

geometry investigated, this distribution was divided by the total number of

correlations. Figure 7.5-1 plots this normalized distribution for the parameter

correlations greater than 0.50. This graph shows how the single orbiter, earth-

based sensing scheme is characterized by very high parameter correlations. If

a subsatellite and laser ranging and Doppler instrumentation are added to this

scheme, the correlations are driven down significantly and lunar far-side

motion is observed. If these mission modifications are not feasible, then

augmenting the single orbiter earth-based sensing scheme with long baseline

interferometer measurements will also reduce the parameter correlations,

although several of the highest correlations still remain in both cases.

According to the graph, a better mission modification would be to

include an elliptical "viewing" satellite to observe the near-circular low

altitude polar "sensing" satellite. The chart suggests that if the "viewing"

satellite is placed in an orbital plane orthogonal to the "sensing" satellite's

orbital plane, the lowest parameter correlations are achieved. If both

spacecraft, however, are launched together and then separated after Lunar

Orbit Insertion (LOI), as was planned for the Lunar Observer mission [39],

then coplanar "viewing" and "sensing" satellites will still provide one of the

lowest sets of parameter correlations.

These attempts to break the parameter correlations demonstrate that

although some of the parameter correlations can be reduced, using a near-

circular polar 200 km altitude satellite as the "sensing" vehicle to estimate an

8 x 8 spherical harmonic expansion to model the lunar gravity field
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consistently results in extremely high gravitational parameter correlations

between the C 55 C 75, S 55 S 75, S 66 $86, and C66 C 86 gravitational parameters.

Parameter Correlation Distribution

[] Dual Orthog
1.4.

._ _ I Dual Coplanar

_ 1.2
o _ 1 • Single w/Az & E1
.._

'_ 0.8. [] Single Sat w/Az

_ 0.6-
,_ o [] GSFC Mode
o.._

[] Single Sat
_ _ 0.2-

O=

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0

Correlation Value
1.00

Figure 7.5-1: Parameter Correlation Distributions for Several Observation Methods

Because the highest parameter correlations are always for the n-2, n-2

and n, n-2 parameters and the n-3, n-3 and n-l, n-3 parameters, the spherical

harmonic expansion geometry should be investigated. Both sets of

correlations involve sectorial terms and a tesseral counterpart with the same

number of longitudinal slices. The n=m=6 sectorial and n=8, m=6 tesseral

terms zero lines are illustrated by the globes in Figure 7.5-2. The geometrical

relationship of these highly correlated gravitational parameters suggests that

they may result from estimating the lunar gravity field solely from

observations of a polar lunar satellite, since the satellite's ground track

repeatedly traverses the sectorial slices of the moon.

This analysis suggests that the best way to break the high gravity

coefficient correlations would be to use multiple inclination "sensing"

satellites. In his lunar harmonic gravity analysis, Alfred Ferrari noted that
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"...[W]ell conditioned estimates of the gravity harmonics are only achieved

when data from many different inclinations are used, ..."[19]. Multiple

inclination observations could be achieved by using new polar satellite data

along with existing Apollo-era near equatorial satellite data. A better scheme

is to place near-circular, low altitude "sensing" satellites in 90 ° and 45 °

inclination orbits and observe their lunar far-side motion with a single

elliptical "viewing" satellite. This data could also be combined with existing

Apollo-era Doppler tracking data when estimating the lunar gravity field.

r

Figure 7.5-2: Tesseral 8,6 and Sectorial 6,6 Zero Line Patterns
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Chapter Eight

Conclusions

8.1 Summary of Results

This thesis investigated the ability of spherical harmonic expansion

estimates of the lunar gravity field to predict low altitude lunar orbits

globally. These lunar spherical harmonic expansions were estimated from

simulated observations of a near-circular polar lunar satellite. Several

different observation geometries and measurement methods were

investigated; two were used to estimate the lunar gravity field.

Since most of the methods used to derive the lunar gravity field

employ Doppler observations, a test was performed to determine the impact

sensing geometry had on gravity field estimation. Since the Doppler

observations measure velocity along the line-of-sight, the geometrical

orientation between the Doppler line-of-sight and the vector between the

mascon and orbiting body will affect the observation's ability to detect the

mascon's presence. For the first scenario in this test, a pair of mascons were

placed on the lunar limbs and an eighth degree and order spherical harmonic

expansion was estimated. For the second scenario, two mascons were placed

on the lunar near- and far-side faces and the process was repeated.

Unfortunately, the test case was unable to conclusively establish the impact of

viewing geometry upon the ability to detect and model local mascon

disturbances.

A lunar gravity "truth" model was developed for this thesis which

combined a fifth degree and order spherical harmonic expansion and nine

major mass anomalies or mascons. The seven most significant lunar maria

mass anomalies, as identified by Wong et. al. [47], served as the lunar near-
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side mascons. The two significant far-side mascons were positioned to be

difficult to sense from earth-based observations and to balance the lunar

center of mass. This truth model, since it contained mascon disturbances, was

intended to be a difficult gravity field to model with a pure spherical

harmonic expansion.

Using the lunar gravitational "truth" model, the near-circular polar

lunar satellite gravity field "sensing" orbit was numerically integrated for

fourteen days, half of a lunar period, to provide complete lunar surface

coverage as the moon rotated under the orbital plane. Since this satellite does

not actually measure the lunar gravity field, different techniques were used to

observe this satellite's motion and estimate the gravity field. Estimates of the

coefficients in spherical harmonic expansions sought to match the

observations of the "sensing" satellite's motion. Based on the observation

residuals between the initial parameter guesses' theoretical observations and

the "truth" model observations, the initial conditions and harmonic

coefficients were adjusted and the process was iterated until the best fit to the

observations was obtained. Although different degree and order spherical

harmonic expansion fits were attempted, the iterative process failed to

converge for those above eighth degree and order, probably because of the

difference between the "truth" (spherical harmonics plus mascons) and fit

(spherical harmonic expansion only) models.

Estimated lunar gravity fields were obtained for two different sensing

schemes. The first scheme recreated the gravitatonal sensing method used

during the Apollo era with mostly near-equatorial satellites. Earth-based

Doppler observations of the near-circular polar lunar satellite were used to

estimate the lunar gravity field. The second sensing scheme employed a

second lunar satellite in an elliptical orbit, viewing the first satellite's motion.

Earth- and satellite-based Doppler observables simulated the coherent bent

pipe link between an earth tracking station, the elliptical "viewing" satellite,

and the circular "sensing" satellite proposed for the Lunar Observer mission

[16, 39, 40].

For the cases in which the estimation process converged upon a fit to

the observations, the fit model was analyzed to determine how well it
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modeled the "true" lunar gravity field. The model's fit to the observations as

well as its ability to model global radial accelerations were investigated.

The observation techniques which employed Doppler observations of

the lunar far-side motion provided a much better fit to the "true" gravity

field. Both estimation techniques employed an eighth degree and order

spherical harmonic expansion. In neither case, however, did the eighth

degree and order spherical harmonic expansion closely model the "true"

lunar gravity field.

Parameter covariance information determined in the estimation fitting

process was used to predict satellite state uncertainties ahead one lunar orbit.

A low altitude, low lunar inclination orbit was selected for this analysis.

Significantly lower state covariances were predicted for the estimated lunar

gravity field based on the dual orbiter sensing scheme. Observations of the

lunar polar satellite during far-side passes significantly reduced the predicted

uncertainties for the estimated fit model. In the best case, the eighth order

spherical harmonic expansion predicted uncertainties of close to three

quarters of a kilometer in position and one meter per second in velocity for

the orbit, hardly acceptable for future lunar missions.

Using the lunar gravity "truth" model, the satellite's "true" position

and velocity were numerically integrated ahead one orbit. The true spacecraft

state was then compared to the predicted state to reveal the state errors. These

errors were then compared to the covariance uncertainties. Once again, the

estimated fit model which included lunar far-side observations did a

significantly better job of predicting the correct satellite state, although it still

provided errors as large as 2.8 kilometers in position and 2.3 meters per

second in velocity. In neither case did the spherical harmonic expansion fit

model's covariance uncertainties come close to predicting the correct state

errors, further evidence of the eighth degree and order expansion's inability

to successfully predict lunar orbits for future lunar missions.

The estimated fit models were then used to plan a lunar landing

deorbit maneuver. Starting on the near side of the moon in a circular low

lunar inclination parking orbit, the satellite's orbit was numerically integrated

to the far side of the moon where a deorbit maneuver placed it in an elliptical

transfer orbit. When the spacecraft reached a specified lunar altitude, as
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detected by an on-board radar altimeter, it began its powered descent to the

lunar surface. After planning the deorbit maneuver to reach a specific

location for powered descent initiation (PDI), the deorbit maneuver was

executed in the "true" lunar gravity field.

The lunar deorbit maneuver planned with the single orbiter earth-

based Doppler sensing scheme estimated gravity field reached PDI altitude

eight degrees in selenographic longitude and three quarters of a degree in

latitude away from its target position, a surface error of over two hundred and

forty kilometers. The lunar deorbit maneuver planned for the dual orbiter

gravity field was only one and three quarters of a degree of longitude and one

fifth of a degree of latitude off target when it reached PDI altitude. This

scenario's lunar surface error was fifty-six kilometers, an error much easier to

recover from during powered descent. Both cases, however, indicate that

further navigation aides will be required during lunar operations, such as

radio beacons at a lunar base or a global lunar navigation system.

Extremely high parameter correlations were encountered when

estimating the gravity coefficients. Three different measurement schemes

were investigated to see if they could reduce these parameter correlations. In

the first case, the elliptical "viewing" satellite was placed in an orbital plane

orthogonal to the circular "sensing" satellite's orbital plane. In the second

case, earth-based interferometer measurements were added to the single

orbiter, earth-based Doppler sensing scheme. Both east-west and north-south

look angles were simulated in this search for a way to break the high

parameter correlations. The third case simulated the Goddard Space Flight

Center's proposed co-orbital laser ranging and Doppler sensing scheme [2].

The first method was able to reduce some of the high parameter

correlations from the dual orbiter co-planar sensing scheme, but several of

the highest parameter correlations remained. The second case significantly

reduced the high parameter correlations from the single satellite earth-based

Doppler-only sensing scheme, although once again the same highest

parameter correlations still remained. The third case produced some

different high parameter correlations. This method reduced the parameter

correlations significantly from the single orbiter, earth-based Doppler sensing

scheme. Although this case would reduce the parameter correlations from
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the single orbiter case, it does not reduce the correlations as much as the dual

orbiter coplanar and orthogonal cases.

Since none of these new observation techniques eliminated the highest

parameter correlations, the spherical harmonic expansion geometry was

investigated to determine why the same parameters were so highly

correlated. It seems that the extremely high correlations result from using a

single polar "sensing" orbit for all of the gravity field estimates. Polar ground

tracks made it difficult to separate the effects of some of the sectorial and

related tesseral terms. "Sensing" orbits at different orbital inclinations should

break the extremely high parameter correlations and aid the lunar gravity

field estimation process.

8.2 Recommendations for Future Research

The research for this thesis revealed several topics for further

investigation. First, a more efficient gravity field model based on a surface

layer representation should be investigated. A surface layer representation

would require roughly one third of the parameters than a spherical harmonic

expansion to model the lunar gravity field's high frequency behavior. The

surface layer representation should be able to constrain the total lunar mass

and lunar center of mass. Estimated fits with this gravity field model, if it is

programmed into the Planetary Ephemeris Program, can be compared to

those obtained with a spherical harmonic expansion gravity field model.

Additionally, this thesis only compared the estimated fit models for

two observation techniques. Because of its observability into the lunar far-

side motion, the dual orbiter scheme naturally provided a better fit to the

lunar gravity "truth" model. Estimated fit models should be developed for

the three different observation methods investigated to break the high

parameter correlations. Different Doppler observation methods, besides the

bent pipe method, can be investigated, including the satellite bounce and

satellite beacon methods proposed by JPL [40]. Straightforward software

changes in PEP should allow simulation of these observables, and further

modifications would allow the incorporation of lunar navigation aids (either
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lunar surface sites or navigation satellites). Additionally, two "sensing"

satellites in different inclinations should be studied to verify their ability to

break the high parameter correlations. Higher degree and order simulated fits

should also be attempted to determine the navigation improvements that can

be achieved with higher resolution spherical harmonic expansions.

For further studies, a less stringent lunar gravity "truth" model should

be used. The difficult to observe mascon on the lunar far side was too large,

in both surface area and total strength. The lunar center of mass should still

be constrained, but the far-side mascons should be roughly the same size and

strength as their near-side counterparts.

If lunar rotation moment of inertia partial derivatives in the Planetary

Ephemeris Program are changed to equivalent second harmonic partial

derivatives, PEP can include lunar laser corner reflector observations

simultaneously with satellite observations in the estimation of the lunar

gravity field. The lunar laser observations would provide very accurate

determinations of the lower degree harmonics (second and even third and

fourth degree [13]), while the lunar satellite observations would aid the

estimation of higher degree harmonics.

Finally, the most appropriate method to estimate the lunar gravity

field with real observations is to use maximum likelihood system

identification. This method runs a Kalman filter on the satellite motion with

noise in the dynamics due to unmodeled forces, and applies a maximum

likelihood estimator to gravity, initial condition, and other parameters [31

Chapter 10].

146



Appendix A

Evaluation of Legendre Polynomials
and

Normalized Legendre Functions

A.1 Legendre Polynomials

The Legendre polynomials and their first and second derivatives are

required for the numerical integration of the equations for satellite motion

and for the partial derivatives of satellite motion. The Legendre polynomials

are used to determine the zonal harmonic gravity effects and are also used in

the recursive formulas for the Legendre functions. Unnormalized zonal

harmonic gravity coefficients are input to PEP since its algorithms use the

unnormalized form of the Legendre polynomials. These algorithms were left

unchanged, because the normalization factor in the equation

P"-_(z) = _2-d + 1P,,(z) (A.1-1)

does not grow too rapidly with zonal harmonic degree n, and the normal

equation's automatic scaling feature works around any numerical problems

(Section 5.1.6). A switch to normalized zonal harmonic coefficients Cn0 from

Jn would also involve a sign change in several PEP subroutines.

The recursive evaluation of Pn(z), Pn(z), Pn(Z) in subroutine LEGNDR

(and the new subroutine LEGNDS) uses the relations [1, 8]

nP,, (z) = (2n - 1)z P,-I (z) - (n - 1)Pn_ 2 (z)

P'. (z) = Pn-2 (Z) + (2n - 1)P._ 1 (z)

P;,'(z) = P;,'2 (z) + (2n - 1)P__ 1 (z)

(A.1-2)

(A.1-3)

(A.1-4)
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with the starting values

Po (z) = 1, PI (z) = z, P2 (z) = _(3z 2 - 1), P3(z) = _2(5z 3 - 3z)

t t t

P0(z)=0, P_(z)=I, P2(z)=3z, P3(z)=_2(15z 2 3)

P_'(z)=O, P_'(z)=0, P_'(z)=3, P_'(z)=15z

(A.1-5)

(A.1-6)

(A.1-7)

The evaluation of the above functions starts with n = 2, since the

spherical harmonic expansions in PEP start at the second degree (assuming

the center of mass of the central body coincides with the origin of

coordinates).

A.2 Normalized Legendre Functions

The Legendre functions and their first and second derivatives are

required for the numerical integration of the equations for satellite motion

and for the partial derivatives of satellite motion. Legendre functions are

used to determine the tesseral harmonic gravity effects. The original version

of PEP converted normalized tesseral harmonic gravity coefficients (Cnm,

Snm) from the input stream into unnormalized coefficients (Cnm, Snm) since

its internal algorithms computed the unnormalized versions of the Legendre

functions. The option was added to PEP (incorporated into the SAO version)

to use normalized Legendre functions in the numerical integration process.

This option was desirable since the normalization factors vary widely for high

degrees n, especially as m approaches n in the equation

=.[2(2n+l)(n-m)! Pnm(Z) m = 1,...,n (A.2-1)
P,,m (z) _ "(n + m)l

Define the precalculated coefficients for m = 1,...,n and n > 1

.[(2n+l)(n-m)

anm = 3_(-_n - 1)(n + m)
(A.2-2)
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= J(2n)(2n + 1)
bnm _ -_+ii " m = 1

=.](2n+l)(n+m-1)
b"m _ -_n---D(n+m_ ' l<m<n

d.m = _/(2n)(2n + 1)(n + 1) , m = 1

d,m=_/(n+m)(n-m+l) , l<m<n

and the following expression from the recursive formulas

unnormalized Legendre functions

q=_l-z 2

(A,2-3)

(A.2-4)

for the

(A.2-5)

The recursive evaluation of Pnm(Z), P_un(z), Pnm(Z) is performed in the new

subroutine LEGNDS using the relations below [1, 8]. The recursive formulas

for the normalized Legendre functions are

p_l(Z)=,f3q, p21(z)=_l-_qz, P22(z)=k/2_q 2 (A.2-6)

p--l(z)=a,,l zp--_l,l(Z)+b,,1 qP,,_l(z), n>2 (A.2-7)

P,,,,,(z) = a,,,, z P--,-I,,,,(z) + b,m q P--,-1,m-1(Z), m = 2,...,n - 1 (A.2-8)

P--..(z) = b.. q P--.-1,.-1(z) (A.2-9)

The recursive formulas for the first derivative of the Legendre functions with

respect to the argument z (using unnormalized Legendre polynomials) are

Pl'I (z) = _,-z"/3 P21 (z) = "_ (1 - 2z 2 ) , P:_2(z) = -z'_ (A.2-10)

q q

p'_l(Z):_(zpnl(z)-dnlqPn(z)) (A.2-11)

p-_m(Z)=_(mzPnm(z)-dnmqPn,m_l(Z)), m=2,...,n (A.2-12)

Lastly, the recursive formulas for the second derivative of the Legendre

functions with respect to the argument z (using unnormalized Legendre

polynomials) are
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"x/-5 zffi5 (2z2 3) (z) -a/_P;;(z)= 7' PS;(_)= ¢ - , PG =
(A.2-13)

(q--+-_ ]
- 1 / q2 P.1 (z) + z P,_I(z)_...,(z_=_ -<(_,,.(z_+q,,;(z_))

(A.2-14)

m 2 _ --t /--,, 1 _(l+z )Pnm(Z)+mzPnm(Z)

-' )J'q -dnm(-qPn,m_l(z)+qPn,m_l(z)

m = 2,...,n

(A.2-15)

The recursive evaluation of the above functions starts with n = 2 for

the gravity harmonic force evaluation, since the spherical harmonic

expansions in PEP start at the second degree (assuming the center of mass of

the central body coincides with the origin of coordinates).
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List of Constants

Primary

Constant Description Value Units
1201

Ms Mass of the sun 1

NVGM Gaussian gravitational constant 0.01720209895 AU3/2/day

CT Coordinate Time dayA.1 + 32.15 s

TAI+32.184 s

A.1, TAI Atomic Time Seconds 9,192,631,770 oscillations
of cesium

The A.1 and TAI atomic times are kept as the average of a number of cesium atomic

clocks at the national time services (particularly at the U.S. Naval Observatory). UTC time
runs at the A.1 and TAI rates, and presently differs from TAI by an integral number of seconds.
Every six or twelve months there is an increase of one second (a UTC leap second) in TAI-UTC,
to keep UTC within one second of UT1 time, defined by a formula in terms of sidereal time [23].
Given a UTC observation time, CT is computed for interpolating from ephemeris files, and UT1
time and earth wobble are computed from tables published by the U.S. Naval Observatory and
the Bureau International de l'Heure (see Appendix C.2).
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Auxiliary
Constant

[23]

AULTSC

c

Ms

Mc

Mc

Mi

GMi

Pl

Pi

gal

Description Value Units

Astronomical Unit

in Light Seconds

Speed of light

sun/(earth + moon) mass ratio

(earth + moon)/moon mass ratio

Lunar gravitational constant

(PEP uses AU3/day 2)

Lunar mean equatorial radius

Lunar period

Unit of Acceleration

499.004782

299,792.458

328,900.1

82.301

4,902.79375

1,738

27.322

1.0

seconds/AU

km/sec

km3/sec 2

km

days

cm/sec 2
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Appendix C

Inertial Coordinate Transformations

C.1 Transformation Between Moon Fixed and Inertial Frames

The transformation between moon-fixed (selenographic) coordinates

and the inertial integration frame coordinates (the mean equinox and equator

of 1950.0) is required to evalute gravity harmonic and mascon accelerations in

the numerical integration of a lunar satellite's motion. Auxiliary software

also uses this transformation to analyze integration output in the

selenographic frame and to prepare numerical integration input. In Equation

(3.2-2) for the transformation between coordinates fixed in the moon and the

integration frame coordinates, the rotation matrix R can be expressed as [6]

R = UVP (C.1-1)

where

p

V

U

Earth precession matrix transforming between integration

frame coordinates and coordinates referred to the mean

equinox and equator of date (50 arcseconds per year).

Transformation between coordinates referred to the mean

equinox and equator of date and coordinates referred to the

mean equinox and ecliptic of date (23.40 rotation).

Transformation between coordinates referred to the mean

equinox and ecliptic of date and coordinates fixed in the

moon along the nominal principal moment of inertia axes

(360 ° per 27.2 days).
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PEP uses a Taylor series expansion to calculate the earth precession

matrix (P) for speed during a numerical integration [7]. If eo is the standard

expression for the obliquity of the ecliptic [20, 23], the transformation matrix

between mean equatorial and ecliptic coordinates of date is

1 0 0 ]
V= 0 cose0 sine 0

0 -sine 0 cose0

(C.1-2)

Cassini's laws plus the physical libration of the moon determine the

transformation between the mean equinox and ecliptic of date and

selenographic coordinates (U). The following formulas are used within PEP

to calculate this transformation matrix.

Letting

M = Mean longitude of the moon measured in the ecliptic from

the mean equinox of date to the mean ascending node of

the lunar orbit and then along the orbit (27.2 ° day period).

f_ = Longitude of the mean ascending node of the lunar orbit

on the ecliptic measured from the mean equinox of date

(18.6 year period).

I = Inclination of the lunar equator to the ecliptic (1.53889°).

o, p, x = Physical librations in node, inclination, and longitude.

Standard polynomial expressions are used for the angles M and fl, as well as

for the angles _, £', F, and D which are from Brown's lunar theory [23]. PEP

uses the following trigonometric series for the physical librations [28]

x = - 12.9" sin e - 0.3" sin 2e + 65.2" sin £' + 9.7" sin (2f - 2£)

+ 1.4" sin (2F - 2D) +2.5" sin (D - f) - 0.6" sin (2D - 2£ + f')

- 7.3" sin (2D - 2_) - 3.0" sin (2D - £) - 0.4" sin 2D

+ 7.6" sin Q (C.1-3)

p = -106"cos £ +35"cos(2F- e) -11"cos2F

- 3" cos (2F - 2D) - 2" cos (2D - _) (C.1-4)
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I('_ - c_) = 108" sin f - 35" sin (2F - f) + 11" sin 2F

+ 3" sin (2F - 2D) + 2" sin (2D - _) (c.1-5)

where I is measured in radians.

In terms of these angles, the Euler angles for the moon rotation are

0=I+p

q = 180°+(M - f2)+(_:- or)

(C.1-6)

The transformation matrix between selenographic coordinates fixed in the

moon and those referred to the mean equinox and ecliptic of date is then [6]

Ull = -sin_ cos0

U12 = cos_/ cos 0

U13 = -sin0 sinq_

U21 = -sin_ cos0

U22 = cos_ cos 0

U23 = -sin0 cosq_

U31 = - sin _ sin 0

U32 = cos _/ sin 0

U33 = cos 0

sin_ - cos_ cos

sin _ + sin _ cos qb

cos q_ - cos _ sin (_

cos qb - sin _ sin qb

(C.1-7)

To check these transformations, the earth and sun's selenographic

longitude and latitude were printed out for certain dates. These positions

were obtained by transforming the vectors pointing from the moon to these

objects with the transformation matrix Equation (C.1-1). This check verified

that PEP's values agreed with the published values in the Astronomical

Almanac, to the number of places published (0.001 ° for the earth, 0.01 ° for the

sun).

Since this transformation's moon-fixed axes are not exactly along the

moon's principal moments of inertia axes, the C21, $21, and $22 spherical

harmonic coefficients cannot be assumed to be zero. If the rotation and orbit

of the moon were estimated by fitting to lunar laser corner reflector data,

these second degree harmonic coefficients could be set to zero.

Simultaneously processing lunar laser data with lunar orbiter data could
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provide the best estimate of the remaining second degree harmonic

coefficients, as well as third and perhaps fourth degree coefficients.

One auxiliary program (selenang), converts satellite osculating orbital

angles in the selenographic coordinate frame to angles in the integration

(1950.0) frame. These angles are input to PEP to specify a desired

selenographic orbital orientation for numerical integrations. Within PEP,

these initial osculating elliptic orbital elements are converted to Cartesian

position and velocity initial conditions for the numerical integrations.

Another auxiliary program (selenelm) converts the numerical

integration output to selenographic position and velocity and to

selenographic osculating elliptic orbital elements as functions of time. The

selenographic osculating elliptic orbital elements, the altitude above the lunar

surface, and the subsatellite selenographic longitude and latitude can then be

plotted over time.

C.2 Transformation Between Earth Fixed and Inertial Frames

Since earth-fixed observing sites need to be transformed to the inertial

frame to process observations, the transformation matrix between earth-fixed

coordinates and the inertial integration frame referred to the mean equinox

and equator of 1950.0 is also required. This rotation transformation matrix R

can be expressed as [8]

R = WSNP (C.2-1)

where

p

N

Earth precession matrix transforming between integration

frame coordinates and coordinates referred to the mean

equinox and equator of date (50 arcseconds per year).

Earth nutation matrix transforming between coordinates

referred to the mean equinox and equator of date and

coordinates referred to the true equinox and equator of date

(20 arcseconds).
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S = Earth sidereal time matrix transforming between

coordinates referred to the true equinox and equator of date

and coordinates with z axis along the earth pole of rotation

and x axis in the meridian of Greenwich through the

rotation pole (360 ° per 23 h 56 m 4.09s).

W = Earth wobble matrix transforming between coordinates

with z axis along the earth pole of rotation and x axis in the

meridian of Greenwich and coordinates with z axis along

the conventional international pole and x axis in the

meridian of Greenwich through the conventional

international pole (0.3 arcseconds).

Since PEP uses the IAU value of the precession constant [23] in the

trigonometric angles for evaluating the precession matrix, P, numerical

integration results in the 1950.0 reference frame are transformations of

integration results in the IAU J2000.0 reference frame [23].

Since observations in PEP are a function of UTC time and there is a

mathematical formula relating sidereal time to UT1 time [23], the

relationship between UTC and UT1 time is needed to determine the sidereal

time transformation matrix, S. PEP determines this relationship from values

published by the U.S. Naval Observatory based on photographic zenith tube

and other observations.

UT1 - UTC = (A.1 - UTC) - (A.1 - UT1) (C.2-2)

The U.S. Naval Observatory and the Bureau International de l'Heure

also publish wobble coordinates based on the above mentioned observations

which are used to compute the earth wobble transformation matrix, W. Exact

values of these quantities were not required for this thesis' simulations.
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Lunar Gravitational "Truth" Model

Table D-l: 5 X 5 Spherical Harmonic Coefficient Portion of Truth Model [12]

Harmonic

J2

c21

c22

J3

C31

C32

C33

J4

C41

C42

C43

C44

J5

c51

C52

C53

C54

C55

x 10-6

202.431

-0.07

34.49

8.8897

21.96

14.14

15.87

-11.73

-4.82

-8.13

0.48

-3.50

2.388

-9.66

3.71

-0.39

0.56

-6.69

Harmonic

$21

s22

$31

$32

$33

m

$41

$42

$43

$44

m

$51

S 52

$53

s54
$55

x 10-6

6.63

4.76

-2.45

1.91

-6.76

-14.43

-0.55

-1.53

-2.35

4.91

-6.58

11.60
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Table D-2: Lunar Near-Side Mascons at 1638 km Radius [47]

Mass East North

(10 -6 Lunar Longitude Latitude

Mass) (degrees) (degrees)

Sea of Serenity
0.101 10.5

2.437 17.5

2.453 10.5

3.316 17.5

3.774 24.5

0.371 8.25

2.628 13.75

3.628 19.25

1.681 24.75

0.290 12.5

0.624 17.5

0.229 22.5

34.0

34.0

28.O

28.0

28.0

22.5

22.5

22.5

22.5

17.5

17.5

17.5

Sea of Crises

0.230

1.520

0.992

2.837

1.836

1.183

0.688

52.25

57.75

52.5

57.75

62.5

57.5

62.5

22.5

22.5

17.5

17.5

17.5

17.5

12.5

Sea of Nectar

0.251

1.394

1.199

0.602

4.180

0.663

27.5

32.5

37.5

27.5

32.5

37.5

-12.5

-12.5

-12.5

-17.5

-17.5

-17.5

Mass East North

(10 -6 Lunar Longitude Latitude

Mass) (degrees) (degrees)

Sea of Rains

-0.597 342.0

0.467 328.5

5.329 337.5

5.218 346.5

1.252 328.5

1.628 335.5

3.586 342.5

1.752 349.5

-0.421 328.5

2.336 335.5

2.654 342.5

Seething Bay
0.328 347.5

1.934 352.5

0.531 347.5

1.522 352.5

Sea of Moisture

3.091 318.75

2.726 325.25

0.164 321.5

0.622

-0.172

0.873

0.739

0.352

0.691

Smyth's Sea
87.5

82.5

87.5

92.5

87.5

92.5

48.0

40.5

40.5

40.5

34.0

34.0

34.0

34.0

28.0

28.0

28.0

12.5

12.5

7.5

7.5

-22.5

-22.5

-28.0

2.5

-2.5

-2.5

-2.5

-7.5

-7.5
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Table D-3: Lunar Far-Side Mascons at 1638 km Radius

Mass East North

(10 -6 Lunar Longitude Latitude
Mass) (degrees) (degrees)

Difficult to Observe Mascon

1.836

2.367

1.726

1.357

2.929

2.265

0.935

1.323

2.682

177.5

180.0

182.5

176.75

178.75

181.25

183.75

175.0

177.5

-8.0

-8.0

-8.0

-5.0

-5.0

-5.0

-5.0

0.0

0.0

Mass

(10 .6 Lunar

Mass)

East

Longitude
(degrees)

0.829

1.504

1.254

0.615

1.391

1.613

O.825

2.125

4.737

7.712

182.5

180.0

177.5

183.75

181.25

178.75

176.25

185.0

182.5

180.0

North
Latitude

(degrees)

8.0

8.0

8.0

5.0

5.0

5.0

5.0

0.0

0.0

0.0

Balancing Mascon
4.151 212.0 -48.0

7.212 214.5 -48.0

2.817 217.0 -48.0

Final Point Masses

4.85x10 -6 214.93 -49.06

1.602

2.534

5.128

3.713

1.11385

2.1×10-11

213.25

215.75

213.25

215.75

217.6253

203.77

-50.5

-50.5

-45.5

-45.5

-63.400_

-43.54

161



LUNAR GRAVITATIONAL FIELD ESTIMATION AND SATELLITE ORBIT PREDICTION

162



Appendix E

Tables of Spherical
Harmonic Coefficients

On the following pages are the tables containing the spherical

harmonic coefficients for the models estimated in this thesis. Also included

are the spherical harmonic coefficients from degree six through ten from Alex

Konopliv's 50 x 50 spherical harmonic model estimated at the Jet Propulsion

Laboratory. These coefficients were used in the fit of a 10 x 10 model to

observations generated by a 10 x 10 truth model. The tesseral coefficients are

normalized and the zonal coefficients are unnormalized to follow the

convention used in PEP-D which was modified from the SAO's version to

use normalized Legendre polynomials, but not normalized Legendre

functions.

163



LUNAR GRAVITATIONAL FIELD ESTIMATION AND SATELLITE ORBIT PREDICTION

Table E-l: Limb Mascon Fit Model Coefficients

Harmonic

J2

J4

J6

J8
C21

c22
C31

C32

C33

C41

C42

c43
c44
C51

%2
c53
C54

c55
C61

C62

c63
c64
c65
C66

C71

C72

C73

C74

c75
c76
C77

C81

c82
c83
c84
c_5
c86
c87
c88

X 10 -6

197._68

-31.9055

1.7549

-10.1_3

-12.7475

27.1059

24.0662

28.6630

14.4920

23.9593

-8.9861

-12.4622

0.4030

-14.7946

-23.7583

4.8944

10.1329

-7.8183

-24.7054

5.8578

18.9141

-6.4188

-2.7320

-0.1282

1.2154

14.2798

4.8109

-8.6970

-8.6970

0.2179

0.0208

7.8239

1.7894

-6.3293

4.5862

2.3076

-1.6316

0.3903

0.7639

Harmonic

J3

J5
J7

$21

$22

$31

$32

$33

$41

$42

$43

$44

$51

$52

$53

$54

$55

$61

$62

$63

$64

$65

$66

$71

$72

$73

$74

$75

$76

$77

$81

$82

$83

$84

$85

$86

$87

$88

x le 6

50.7687

-69.3894

43.8035

1.5079

0.2444

4.02_

-1.0723

-3.2_6

4.4657

4.9991

4.5046

-1.5219

1.0878

10.2963

4.2337

-16.9327

13.3437

5.6856

-2.0959

-14.0732

1.8413

6.2106

-1.7523

0.7781

-7.2171

3.4451

9.1036

9.1036

-0.5194

0.0303

-1.9813

-0.5271

3.9422

-1.1922

-5.2013

2.5572

0.3041

0.0524

Note: All of the Cnm and Snm terms are Normalized. The Jn terms are Unnormalized.
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Table E-2: Face Mascon Fit Model Coefficients

Harmonic

J2

J4

J6
J8

C21

c22
C31

c32
%3
C41

%2
%3
C44

C51

C52

C53

c54
C55

C61

C62

C63

C64

c65
c66
C71

c72
C73

C74

C75

C76

C77

C81

c82
c83
c84
c85
cs6
c87
c8s

x 10 -6

212.9685

-17.2629

6.8783

1.9000

10.1197

35.1938

20.1172

0.1584

19.8874

-25.7774

-2.1818

14.6293

-4.5549

-7.5438

24.1943

-8.1387

-11.5970

-4.6557

17.6456

-0.9812

-16.1761

4.9624

6.4501

-0.9473

1.5589

-9.6129

2.9190

10.2397

-3.1597

-0.5898

0.1187

-6.5178

-2.6772

3.3579

-0.5695

-5.7318

3.6244

-0.4581

1.5694

Harmonic

J3
J5
J7

$21

$22

$31

$32

$33

$41

$42

$43

$44

$51

$52

$53

$54

$55

$61

$62

$63

$64

$65

$66

$71

$72

$73

$74

$75

$76

$77

$81

$82

$83

$84

$85

$86

$87

$88

x 10 -6

-18.2734

56.7533

-33.1132

8.9737

5.8036

-5.5137

3.4003

-11.9870

-18.4118

3.9231

-0.8299

-7.5913

12.9983

-0.2905

7.4909

-3.3481

1.0038

7.6098

-9.3866

-4.1229

3.4506

-3.8029

4.0109

-4.8617

-4.9557

7.1339

1.1869

0.0073

-0.4581

1.4211

-4.3328

4.2547

2.0067

-5.2175

-0.4756

0.0024

Note: All of the Cnm and Snm terms are Normalized. The Jn terms are Unnormalized.
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Table E-3: 8 X 8 Single Orbiter Earth-based Doppler Fit Model Coefficients

Harmonic x 10 -6 Harmonic x 10 -6

J2
J4
J6
J8

181.1456

-74.6007

133.1974

-16.5125

C21 20.7759

C22 98.9974

C31 52.1951

C32 15.7778

C33 -52.7148

C41

%2
c43
c44
c51
C52

C53

C54

c55
C61

C62

c63
C64

c65
C66

C71

C72

C73

C74

C75

C76

c77
C81

C82

CS3
C84
C85
C86
C87

C88

16.7472

-101.0443

0.9710

79.4372

-80.3231

-6.9808

137.9127

18.6358

-80.5845

41.8646

76.5292

0.9371

-140.8093

-10.4542

43.5262

44.0845

15.2502

-63.0660

10.4385

125.9903

24_q612

-8.5265

15.1214

-30.5354

-6.4764

33.7568

-22.1201

-68.3081

-5.5991

20.2612

J3

J5
J7

59.8185

-132.1220

79.6217

$21 48.2268

$22 63.8880

$31

$32

$33

$41

$42

$43

$44

$51

$52

$53

$54

$55

$61

$62

$63

$64

$65

$66

$71

$72

$73

$74

$75

$76

$77

$81

$82

$83

$84

$85

$86

$87

$88

20.3043

-22.4302

-87.8210

12.8355

-87.6400

-53.3659

62.3998

11.2542

-67.9849

118.1211

61.9093

-35.9216

-56.2582

-9.1320

76.6052

-115.2748

-46.8469

245186

-26.6661

72.1269

4.2952

-66.4744

76.7319

1.5036

-0.5739

15_307

28A645

-50.2189

42.2387

36.8057

-38.0350

3.3389

-1.0150

Note: All of the Cnm and Snm terms are Normalized. The Jn terms are Unnormalized.
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Appendix E: Tables of Spherical Harmonic Coefficients

Table E-4:

Note:

Additional Coefficients for the 10 X 10 Spherical Harmonic Expansion [27]

Harmonic x 10 -6 Harmonic

J6

J8
Jlo

C61

C62

C63

C64

c65
c66
C71

C72

C73

C74

C75

C76

c77
C81

c82
%3
c84
c85
c86
c_7
c88
C91

C92

c93
C94

c95
C96

C97

c98
C99

-4.2385

-2.5920

1.6589

1.9850

-4.0909

-2.8312

0.4618

1.0906

-5.3433

7.2821

-1.2317

0.2624

-1.4476

-0.6229

-0.8231

-0.9763

-0.8685

3.2189

-1.3720

3.9047

-0.8683

-0.8443

-1.5132

-3.3194

1.6794

2.7144

-2.0677

-2.3575

-1.9722

-2.1046

-4.8133

-1.7042

-0.2704

0.3840

-0.1513

0.1089

-3.4765

1.5547

0.0773

-4.6092

-2.5105

-3.9610

0.6457

C10,1

C10,2

C10,3

C10,4

clo, s
C10,6
C10,7

%o,s
C10,9

Clo, lo

J7

b

$61

$62

$63

$64

$65

$66

$71

$72

$73

$74

$75

$76

$77

$81

$82

$83

$84

$85

$86

$87

$88

$91

$92

$93

$94

$95

$96

$97

$98

$99

$1o,1

$1o,2

$1o_3

$1O,4

$1o_

51o,6

$1o,7

$1o,8

$1O,9

SlOrlO

x 10-6

-6.2390

-3.5975

-3.1813

-2.2826

-3.7963

-3.5250

-10.6099

6.3502

-0.2472

2.7566

2.2896

1.2214

-0.0130

1.3403

-0.5650

1.5051

-2.0279

0.6560

-0.7301

2.2454

-0.3390

3.1351

1.0685

-0.0034

-1.5708

2.0466

-1.3200

-2.8712

-2.3382

-2.6997

-2.1130

-3.4853

-0.4607

0.0074

0.7679

1.8562

-0.1451

-3.1297

-1.6688

-6.1743

0.0054

2.4016

All of the Cnm and Snm terms are Normalized. The Jn terms are Unnormalized.
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Table E-5:8 X 8 Dual Orbiter Bent Pipe Doppler Fit Model

Harmonic

J2

J4

J6

J8
C21

C22

C31

C32

c33
C41

C42

c43
c44
C51

C52

c53
(:54
Css
C61

c62
c63
C64

c65
c66
C71

C72

C73

C74

c75
C76

C77

C81

c82
c_
C84
C85
c86
c87
c88

x 10 -6

222.3087

16.0116

-3.5341

6.2438

20.9141

62.9024

23.0231

17.3213

5.0245

-7.0910

--15.3037

7.7601

5.5738

-16.6822

3.6949

13.4951

7.6961

-28.7475

-5.4094

6.5187

3.4694

-7.7898

-4.3649

6.4123

6.2918

-0.1180

4.5694

2.2257

30.7662

5.6403

_.6869

3.4853

-2.9015

-7.9046

-0.2085

-2.3673

-9.0060

-0.3801

1.0937

Harmonic

J3

J5
J7

$21

$22

$31

$32

$33

$41

$42

$43

$44

$51

$52

$53

$54

$55

$61

$62

$63

$64

$65

$66

$71

$72

$73

$74

S75

$76

$77

$81

$82

$83

$84

$85

$86

$87

$88

x 10 -6

25.5174

--26.9111

9.0723

4.4952

11.3343

3.6164

4.4079

-9.5957

1.0255

-12.3986

-23.7569

2.7198

-8.5788

-9.5117

-0.4007

-0.8922

-3.3561

8.9587

4.8860

8.8267

--14.6763

-14.2858

Q.2788

5.7153

-1.3007

6.7590

-13.5958

22.8105

-1.1883

0.9170

-6.5550

11.7741

4.2567

16.0011

9.2307

1.2082

-1.1762

-1.2396

Coefficients

Note: All of the Cnm and Snm terms are Normalized. The Jn terms are Unnormalized.
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